Skip to main content

Average-Case Rigidity Lower Bounds

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12730))

Abstract

It is shown that there exists \(f : \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}\) in E\(^\mathbf {NP}\) such that for every \(2^{n/2} \times 2^{n/2}\) matrix M of rank \(\le \rho \) we have \(\mathbb {P}_{x,y}[f(x,y)\ne M_{x,y}] \ge 1/2-2^{-\varOmega (k)}\), whenever \(\log \rho \le \delta n/k(\log n + k)\) for a sufficiently small \(\delta > 0\), and n is large enough. This generalizes recent results which bound below the probability by \(1/2-\varOmega (1)\) or apply to constant-depth circuits.

Supported by NSF CCF award 1813930.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic applications. In: IEEE Symposium on Foundations of Computer Science (FOCS) (2016)

    Google Scholar 

  2. Alman, J., Chen, L.: Efficient construction of rigid matrices using an NP oracle. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1034–1055 (2019)

    Google Scholar 

  3. Ben-Sasson, E., Viola, E.: Short PCPs with projection queries. In: Colloquium on Automata, Languages and Programming (ICALP) (2014)

    Google Scholar 

  4. Bhangale, A., Harsha, P., Paradise, O., Tal, A.: Rigid matrices from rectangular PCPs. In: IEEE Symposium on Foundations of Computer Science (FOCS) (2020)

    Google Scholar 

  5. Chan, T.M., Williams, R.: Deterministic APSP, orthogonal vectors, and more: quickly derandomizing razborov-smolensky. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1246–1255 (2016)

    Google Scholar 

  6. Chen, L.: Non-deterministic quasi-polynomial time is average-case hard for ACC circuits. In: IEEE Symposium on Foundations of Computer Science (FOCS) (2019)

    Google Scholar 

  7. Chen, L., Lyu, X.: Inverse-exponential correlation bounds and extremely rigid matrices from a new derandomized XOR lemma. In: ACM Symposium on the Theory of Computing (STOC) (2021)

    Google Scholar 

  8. Chen, L., Lyu, X., Williams, R.: Almost everywhere circuit lower bounds from non-trivial derandomization. In: IEEE Symposium on Foundations of Computer Science (FOCS) (2020)

    Google Scholar 

  9. Chen, L., Ren, H.: Strong average-case circuit lower bounds from non-trivial derandomization. In: ACM Symposium on the Theory of Computing (STOC) (2020)

    Google Scholar 

  10. Chen, L., Williams, R.R.: Stronger connections between circuit analysis and circuit lower bounds, via PCPs of proximity. In: IEEE Conference on Computational Complexity (CCC), pp. 19:1–19:43 (2019)

    Google Scholar 

  11. Chen, R., Oliveira, I.C., Santhanam, R.: An average-case lower bound against \(ACC^0\). In: LATIN. Lecture Notes in Computer Science, vol. 10807, pp. 317–330. Springer (2018)

    Google Scholar 

  12. Cook, S.A.: A hierarchy for nondeterministic time complexity. J. Comput. Syst. Sci. 7(4), 343–353 (1973)

    Article  MathSciNet  Google Scholar 

  13. Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 273–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_23

    Chapter  MATH  Google Scholar 

  14. Murray, C., Williams, R.R.: Circuit lower bounds for nondeterministic quasi-polytime: an easy witness lemma for NP and NQP. In: STOC, pp. 890–901. ACM (2018)

    Google Scholar 

  15. Paradise, O.: Smooth and strong PCPss. In: ACM Innovations in Theoretical Computer Science conf. (ITCS), pp. 2:1–2:41 (2020)

    Google Scholar 

  16. Rajgopal, N., Santhanam, R., Srinivasan, S.: Deterministically counting satisfying assignments for constant-depth circuits with parity gates, with implications for lower bounds. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) Symposium on Mathamatics Foundations of Computer Science (MFCS). LIPIcs, vol. 117, pp. 78:1–78:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.78

  17. Razborov, A.: Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Math. Notes Acad. Sci. USSR 41(4), 598–607 (1987)

    Google Scholar 

  18. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic time complexity classes. J. ACM 25(1), 146–167 (1978)

    Article  MathSciNet  Google Scholar 

  19. Servedio, R.A., Viola, E.: On a special case of rigidity (2012). http://www.ccs.neu.edu/home/viola/

  20. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: 19th ACM Symposium on the Theory of Computing (STOC), pp. 77–82. ACM (1987)

    Google Scholar 

  21. Smolensky, R.: On representations by low-degree polynomials. In: 34th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 130–138 (1993)

    Google Scholar 

  22. Tamaki, S.: A satisfiability algorithm for depth two circuits with a sub-quadratic number of symmetric and threshold gates. Electron. Coll. Comput. Complexity (ECCC) 23, 100 (2016). http://eccc.hpi-web.de/report/2016/100

  23. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977). https://doi.org/10.1007/3-540-08353-7_135

    Chapter  Google Scholar 

  24. Viola, E.: New lower bounds for probabilistic degree and AC0 with parity gates. Electron. Coll. Computat. Complexity (ECCC) 27, 15 (2020)

    Google Scholar 

  25. Vyas, N., Williams, R.: Lower bounds against sparse symmetric functions of ACC circuits: expanding the reach of #SAT algorithms. In: Symposium on Theoretical Aspects of Computer Science (STACS) (2020)

    Google Scholar 

  26. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: 42nd ACM Symposium on the Theory of Computing (STOC), pp. 231–240 (2010)

    Google Scholar 

  27. Williams, R.: Guest column: a casual tour around a circuit complexity bound. SIGACT News 42(3), 54–76 (2011)

    Article  Google Scholar 

  28. Williams, R.: Natural proofs versus derandomization. In: ACM Symposium on the Theory of Computing (STOC) (2013)

    Google Scholar 

  29. Williams, R.: New algorithms and lower bounds for circuits with linear threshold gates. In: ACM Symposium on the Theory of Computing (STOC) (2014)

    Google Scholar 

  30. Williams, R.: Nonuniform ACC circuit lower bounds. J. ACM 61(1), 2:1–2:32 (2014). http://doi.acm.org/10.1145/2559903

  31. Zák, S.: A turing machine time hierarchy. Theor. Comput. Sci. 26, 327–333 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuangui Huang .

Editor information

Editors and Affiliations

Appendices

A Proof of Lemma 3

Proof

The first column of A is \(\langle i,u \rangle \), row-indexed by \(i \in \mathrm {\{0,1\}}^m\). The second column of A is all 1, while the third column of A is all b. The second row of B is \(\langle j,u \rangle \), column-indexed by \(j \in \mathrm {\{0,1\}}^m\), while every other entry in B is 1.

B Proof of Lemma 4

Proof

The algorithm on input \(\widetilde{\pi } = \sum _{i = 1}^m \alpha _i \cdot (-1)^{A^{(i)}B^{(i)}}\) runs as follows:

  1. 1.

    Initialize the result \(\mathsf {res}\) to be 0.

  2. 2.

    For each \(R_\mathsf {shared}\in \mathrm {\{0,1\}}^{r_\mathsf {shared}}\):

    1. (a)

      Compute the decision function \(D = D(1^n;R_{\mathsf {shared}})\) and randomness parity check \((C_1, \dots , C_p) = (C_1(1^n; R_{\mathsf {shared}}), \dots , C_p(1^n; R_{\mathsf {shared}}))\).

    2. (b)

      For each \(k \in [q]\), for each \(i \in [m]\),

      1. i

        Compute the \(2^{r_\mathsf {rect}} \times \rho \) matrices \(A^{(k,i)}\) whose \(R_\mathsf {row}\)-th row is the row of \(A^{(i)}\) indexed by \(i^{(k)}(1^n; R_\mathsf {row}, R_\mathsf {shared})\) for all \(R_\mathsf {row}\in \mathrm {\{0,1\}}^{r_\mathsf {rect}}\).

      2. ii

        Compute the \(\rho \times 2^{r_\mathsf {rect}}\) matrices \(B^{(k,i)}\) whose \(R_\mathsf {col}\)-th column is the column of \(B^{(i)}\) indexed by \(j^{(k)}(1^n; R_\mathsf {col}, R_\mathsf {shared})\) for all \(R_\mathsf {col}\in \mathrm {\{0,1\}}^{r_\mathsf {rect}}\).

    3. (c)

      For each \(j \in [p]\),

      1. i

        Compute the \(2^{r_\mathsf {rect}} \times 3\) matrix \(A^{(q+j,1)}\) and the \(3 \times 2^{r_\mathsf {rect}}\) matrix \(B^{(q+j, 1)}\) with \(\left( (-1)^{A^{(q+j,1)}B^{(q+j,1)}}\right) _{R_\mathsf {row},R_\mathsf {col}} = C_j(R_\mathsf {row}, R_\mathsf {col})\) given by Lemma 3.

    4. (d)

      Now we define q m-sums of rank-\(\rho \) matrices, \(\widetilde{Q}_{k} = C \sum _{i = 1}^m b_i \cdot (-1)^{A^{(k,i)}B^{(k,i)}}\) for each \(k \in [q]\), and p 1-sums of rank-3 matrices, \(\widetilde{Q}_{q+j} = (-1)^{A^{(q+j,1)} B^{(q+j, 1)}}\) for each \(j \in [p]\). Apply Theorem 2 to calculate the following value and add it to \(\mathsf {res}\):

      $$ \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}\left[ \left( \overline{D}(\widetilde{Q}_1, \dots , \widetilde{Q}_q, \widetilde{Q}_{q+1}, \dots , \widetilde{Q}_{q+p})\right) _{R_\mathsf {row}, R_\mathsf {col}}\right] . $$
  3. 3.

    Return \(\mathsf {res}\) as the value of \(\mathrm {\mathbb {E}}_R\left[ \widetilde{V}^{\widetilde{\pi }}(1^n;R)\right] \).

Correctness of the algorithm follows from Definition 6.

Step 2(b) runs in time \(O(2^{r_\mathsf {rect}} \cdot (t + m\rho ))\), while Step 2(c) runs in \(O(r 2^{r_\mathsf {rect}})\) by Lemma 3, which is dominated by the runtime of Step 2(b) since \(t \ge r\). By Theorem 2, Step 2(d) takes time \(O\big (2^{q+p}\cdot m^{q+p}\cdot (T(2^{r_\mathsf {rect}}, (q+p)\rho ) + \mathrm {{poly}}(n, q+p, r))\big ) = O\left( 2^{q+p}\cdot m^{q+p}\cdot T(2^{r_\mathsf {rect}}, (q+p)\rho )\right) \mathrm {{poly}}(n)\), if \((q+p)\rho = \left( 2^{r_\mathsf {rect}}\right) ^{o(1)}\), i.e. \(\log ((q+p)\rho ) = o(r)\). Therefore the running time of the above algorithm is

$$\begin{aligned}&O\left( 2^{r_\mathsf {shared}} \cdot \left( 2^{r_\mathsf {rect}} \cdot (t + m\rho ) + 2^{q+p}\cdot m^{q+p}\cdot T(2^{r_\mathsf {rect}}, (q+p)\rho ) \right) \right) \mathrm {{poly}}(n) \\ =~&O\left( 2^{r_\mathsf {shared}+r_\mathsf {rect}} \cdot (t+m\rho ) + m^{q+p} \cdot 2^{q+p+r - \varOmega (r / \log ((q+p)\rho ))} \right) \mathrm {{poly}}(n). \end{aligned}$$

C Proof of Lemma 7

Proof

Fix an arbitrary \(R_\mathsf {shared}\in \mathrm {\{0,1\}}^{r_\mathsf {shared}}\). By definition \(\mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left| V^\pi (1^n;R) - \widetilde{V}^{\widetilde{\pi }}(1^n;R)\right| \right] \) is

$$\begin{aligned} \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}&\left[ \left| D(\pi _{i^{(1)}, j^{(1)} }, \dots , \pi _{i^{(q)}, j^{(q)} }, C_1(R_\mathsf {row}, R_\mathsf {col}), \dots , C_p(R_\mathsf {row}, R_\mathsf {col}) ) \right. \right. \nonumber \\&\qquad \left. \left. - D(\widetilde{\pi }_{i^{(1)}, j^{(1)} }, \dots , \widetilde{\pi }_{i^{(q)}, j^{(q)} }, C_1(R_\mathsf {row}, R_\mathsf {col}), \dots , C_p(R_\mathsf {row}, R_\mathsf {col}) ) \right| \right] , \end{aligned}$$
(2)

where \(D = D(1^n; R_\mathsf {shared})\), \((C_1, \dots , C_p) = (C_1(1^n; R_\mathsf {shared}), \dots , C_p(1^n; R_\mathsf {shared}))\), \(i^{(k)} = i^{(k)}(1^n; R_\mathsf {row}, R_\mathsf {shared})\) and \(j^{(k)} = j^{(k)}(1^n; R_\mathsf {row}, R_\mathsf {shared})\) for all \(k \in [q]\).

We write D in its Fourier expansion \(D(z_1, \dots , z_{q+p}) = \sum _{S \subseteq [q+p]} \beta _S \prod _{k \in S} z_k\), where for each \(S \subseteq [q+p]\), \(\beta _S = \mathrm {\mathbb {E}}_{z \in \mathrm {\{-1,1\}}^{q+p}} \left[ D(z) \prod _{k \in S} z_k\right] \). For all \(z\in \mathrm {\{-1,1\}}^{q+p}\), \(D(z) \in \mathrm {\{0,1\}}\) and \(\prod _{k \in S} z_k \in \mathrm {\{-1,1\}}\), thus \(\left| \beta _S\right| \le 1\) for any S. Hence by the triangular inequality we can bound (2) by

$$\begin{aligned}&\sum _{S \subseteq [q+p]} \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}\left[ \left| \left( \prod _{k \in S \cap [q]} \pi _{i^{(k)}, j^{(k)}} - \prod _{k \in S \cap [q]} \widetilde{\pi }_{i^{(k)}, j^{(k)}}\right) \prod _{k \in S \setminus [q]} C_k(R_\mathsf {row}, R_\mathsf {col}) \right| \right] \nonumber \\ =~&2^p \sum _{S \subseteq [q]} \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}\left[ \left| \prod _{k \in S } \pi _{i^{(k)}, j^{(k)}} - \prod _{k \in S} \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right| \right] , \end{aligned}$$
(3)

as all the \(C_k\)’s are \(\mathrm {\{-1,1\}}\)-valued.

Fix any \(S \subseteq [q]\). Wlog let \(S = \{1, \dots , d\}\) for some \(d \le q\), then the expectation in (3) can be written as

$$\begin{aligned}&\mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}\left[ \left| \prod _{u=1}^d \pi _{i^{(u)}, j^{(u)}} - \prod _{u=1}^d \widetilde{\pi }_{i^{(u)}, j^{(u)}} \right| \right] \\ =~&\mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}}\left[ \left| \sum _{v=1}^d \left( \prod _{u=1}^{v -1} \widetilde{\pi }_{i^{(u)}, j^{(u)}} \prod _{u=v}^d \pi _{i^{(u)}, j^{(u)}} - \prod _{u=1}^{v} \widetilde{\pi }_{i^{(u)}, j^{(u)}} \prod _{u=v+1}^d \pi _{i^{(u)}, j^{(u)}} \right) \right| \right] \\ \le ~&\sum _{v=1}^d \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left| \prod _{u=1}^{v -1} \widetilde{\pi }_{i^{(u)}, j^{(u)}} \prod _{u=v}^d \pi _{i^{(u)}, j^{(u)}} - \prod _{u=1}^{v} \widetilde{\pi }_{i^{(u)}, j^{(u)}} \prod _{u=v+1}^d \pi _{i^{(u)}, j^{(u)}} \right| \right] \\ =~&\sum _{v=1}^d \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left| \prod _{u=1}^{v -1} \widetilde{\pi }_{i^{(u)}, j^{(u)}} \cdot \left( \pi _{i^{(v)}, j^{(v)}} - \widetilde{\pi }_{i^{(v)}, j^{(v)}} \right) \cdot \prod _{u=v+1}^d \pi _{i^{(u)}, j^{(u)}} \right| \right] \\ \le ~&\sum _{v=1}^d \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(v)}, j^{(v)}} - \widetilde{\pi }_{i^{(v)}, j^{(v)}} \right) ^2 \right] \right) ^{1/2} \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \prod _{u=1}^{v -1} \widetilde{\pi }^2_{i^{(u)}, j^{(u)}} \prod _{u=v+1}^d \pi ^2_{i^{(u)}, j^{(u)}} \right] \right) ^{1/2} \\ \le ~&\sum _{v=1}^d \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(v)}, j^{(v)}} - \widetilde{\pi }_{i^{(v)}, j^{(v)}} \right) ^2 \right] \right) ^{1/2} \\ =~&\sum _{k \in S} \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2}, \end{aligned}$$

where the first inequality comes from the triangular inequality, the second inequality follows from the Cauchy-Schwarz inequality, and the last inequality follows from the assumptions that \(\pi \in \mathrm {\{-1,1\}}^{\ell \times \ell }\) and \(\widetilde{\pi }\) is bounded for V.

Summing over S, we can bound (3) by

$$\begin{aligned}&2^p \sum _{S \subseteq [q]} \sum _{k \in S} \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2} \\ =~&2^{p + q - 1} \sum _{k \in [q]} \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2} \\ =~&2^{O(p+q)} \mathrm {\mathbb {E}}_{k \in [q]} \left[ \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2}\right] \\ \le ~&2^{O(p+q)} \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}, k} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2}, \end{aligned}$$

where the first step uses double counting, and the last step follows from Jensen’s inequality.

Therefore by averaging over \(R_\mathsf {shared}\), we have

$$\begin{aligned}&\left| \mathrm {\mathbb {E}}_R\left[ V^\pi (1^n;R)\right] - \mathrm {\mathbb {E}}_R\left[ \widetilde{V}^{\widetilde{\pi }}(1^n;R) \right] \right| \\ \le ~&\mathrm {\mathbb {E}}_{R_\mathsf {shared}}\mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}} \left[ \left| V^\pi (1^n;R) - \widetilde{V}^{\widetilde{\pi }}(1^n;R) \right| \right] \\ \le ~&2^{O(p+q)} \mathrm {\mathbb {E}}_{R_\mathsf {shared}} \left[ \left( \mathrm {\mathbb {E}}_{R_\mathsf {row}, R_\mathsf {col}, k} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2} \right] \\ \le ~&2^{O(p+q)} \left( \mathrm {\mathbb {E}}_{R_\mathsf {shared}, R_\mathsf {row}, R_\mathsf {col}, k} \left[ \left( \pi _{i^{(k)}, j^{(k)}} - \widetilde{\pi }_{i^{(k)}, j^{(k)}} \right) ^2 \right] \right) ^{1/2} \\ =~&2^{O(p+q)} \left( \mathrm {\mathbb {E}}_{i,j} \left[ \left( \pi _{i,j} - \widetilde{\pi }_{i,j} \right) ^2 \right] \right) ^{1/2} \\ =~&2^{O(p+q)} \left\| \pi - \widetilde{\pi }\right\| _2, \end{aligned}$$

where the first step uses triangular inequality, the second step uses the above bound for every \(R_\mathsf {shared}\), the third step comes from Jensen’s inequality, and the fourth step follows from the smoothness of V.

D Proof of Lemma 8

Proof

We prove it by induction on k. For \(k=1\) it is trivial as h is bounded. Now we assume that the hypothesis holds for \(k-1\), and we are proving for k.

For all \(x_1 \in \mathrm {\{0,1\}}^n\), define \(g(x_1) = \mathrm {\mathbb {E}}_{y \sim \mathrm {\{0,1\}}^{n(k-1)}}\left[ f^{\oplus k-1}(y)h(x_1, y)\right] \), where we use y for \((x_2, \dots , x_k)\) for convenience. If there exists \(x_1 \in \mathrm {\{0,1\}}^n\) such that \(|g(x_1)| \ge \mathrm {\varepsilon }_{k-1}\), then we know that \(f^{\oplus k-1}\) \(\mathrm {\varepsilon }_{k-1}\)-correlates with \(h'\) defined by \(h'(y) = h(x_1,y)\), so we can use the induction hypothesis for \(k-1\) to get a bounded m-sum of functions obtained by fixing inputs of \(h'\), thus by fixing inputs of h.

Otherwise, for all \(x_1 \in \mathrm {\{0,1\}}^n\) we have \(\left| g(x_1)\right| \le \mathrm {\varepsilon }_{k-1} = \frac{2\mathrm {\varepsilon }_k}{1+ \mathrm {\varepsilon }}\). We take m i.i.d. samples \(y_1, \dots , y_m\) uniformly from \(\mathrm {\{0,1\}}^{n(k-1)}\) for \(m = O\left( \frac{n}{(\mathrm {\varepsilon }_k)^2}\right) \), then define \(\widetilde{g}(x_1) = \mathrm {\mathbb {E}}_{i \in [m]} \left[ f^{\oplus k-1}(y_i)h(x_1, y_i)\right] \). By Chernoff bound,

$$ \Pr _{y_1, \dots , y_m} \left[ \left| g(x_1) - \widetilde{g}(x_1)\right| \ge \frac{1-\mathrm {\varepsilon }}{(1+\mathrm {\varepsilon })^2}\mathrm {\varepsilon }_k \right] \le 2^{-n-1}. $$

By union bound, there exists a fix assignment to \(y_1, \dots , y_m\) such that for all \(x_1 \in \mathrm {\{0,1\}}^n\),

$$\begin{aligned} \left| g(x_1) - \widetilde{g}(x_1)\right| \le \frac{1-\mathrm {\varepsilon }}{(1+\mathrm {\varepsilon })^2}\mathrm {\varepsilon }_k, \end{aligned}$$
(4)

thus \(\left| \widetilde{g}(x_1)\right| \le \left| g(x_1)\right| + \left| g(x_1) - \widetilde{g}(x_1)\right| \le \left( \frac{2}{1+\mathrm {\varepsilon }} + \frac{1-\mathrm {\varepsilon }}{(1+\mathrm {\varepsilon })^2}\right) \mathrm {\varepsilon }_k = \frac{3 + \mathrm {\varepsilon }}{(1 + \mathrm {\varepsilon })^2} \mathrm {\varepsilon }_k\).

Let \(r = \frac{3 + \mathrm {\varepsilon }}{(1 + \mathrm {\varepsilon })^2} \mathrm {\varepsilon }_k\). We define \(\widetilde{h}\) by

$$ \widetilde{h}(x_1) = \frac{\widetilde{g}(x_1)}{r} = \frac{1}{mr} \sum _{i=1}^m f^{\oplus k-1}(y_i)h(x_1, y_i). $$

Now \(|\widetilde{h}(x_1)| \le 1\) for all \(x_1\). We can write \(\widetilde{h}\) as \(C \sum _{i = 1}^m b_i h_i\), where

$$\begin{aligned} C&= \frac{1}{mr},\\ b_i&= f^{\oplus k-1}(y_i), \forall i \in [m], \\ h_i&:x_1 \mapsto h(x_1, y_i), \forall x_1 \in \mathrm {\{0,1\}}^n, \forall i \in [m], \end{aligned}$$

which is a bounded \(O(n/\mathrm {\varepsilon }_k^2)\)-sum of functions that can be obtained by fixing inputs of h. The bit-complexity of m is \(O(k + \log n)\), and O(k) for r, thus the bit-complexity of \(\widetilde{h}\) is \(O(k + \log n)\).

What remains is to prove that \(\mathsf {corr}(f, \widetilde{h}) \ge \mathrm {\varepsilon }\). By the definition of g and assumption we have \(\mathsf {corr}(f,g) = \mathsf {corr}(f^{\oplus k}, h) \ge \mathrm {\varepsilon }_k\). Therefore by the definition of \(\widetilde{h}\), the fact that \(f(x_1) \in \mathrm {\{-1,1\}}\) for all \(x_1\), and (4), we have

$$\begin{aligned} \mathsf {corr}(f, \widetilde{h})&= \frac{\mathsf {corr}(f, \widetilde{g})}{r} \\&\ge \frac{1}{r}\left( \mathsf {corr}(f, g) - \mathrm {\mathbb {E}}_{x_1}\left| g(x_1) - \widetilde{g}(x_1)\right| \right) \\&\ge \frac{\mathrm {\varepsilon }_k - \frac{1-\mathrm {\varepsilon }}{(1+\mathrm {\varepsilon })^2}\mathrm {\varepsilon }_k }{ \frac{3 + \mathrm {\varepsilon }}{(1 + \mathrm {\varepsilon })^2} \mathrm {\varepsilon }_k} \\&= \mathrm {\varepsilon }. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X., Viola, E. (2021). Average-Case Rigidity Lower Bounds. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics