Skip to main content

Synergy-Net: Artificial Intelligence at the Service of Oncological Prevention

  • Chapter
  • First Online:
Handbook of Artificial Intelligence in Healthcare

Abstract

In recent years the constant development of diagnostic techniques has contributed to improving the prognosis of many diseases. Among all, oncological diseases remain those in which a correct and early diagnosis can not only significantly improve the patient’s quality of life but also impact the effectiveness of the therapy itself. Artificial Intelligence can provide valuable aid to this need through the development of predictive models to support the physicians in the diagnosis of the disease. The project “Synergy-Net: Research and Digital Solutions in the Fight Against Oncological Diseases”, born from the collaboration between the Department of Medical and Advanced Surgical Sciences of the University of Campania “L. Vanvitelli”, the National Informatics Inter-University Consortium (National Informatics Inter-University Consortium), Lab ITEM “C. Savy” and Bollino IT S.p.A., aims at the realisation of a technological platform to support the early oncological diagnosis based on the integration of an interoperable communication and clinical data management system leveraging AI. The project has a deeply interdisciplinary nature (lung cancer, breast cancer, colorectal cancer, gastrointestinal carcinomas, prostate cancer, thyroid cancer and malignant skin tumours), which requires the collaboration of very different professionals, including general practitioners, specialist doctors, radiologists, surgeons, pathologists, molecular biologists and oncologists, as well as the support of a team of researchers for aspects related to machine learning and expert system development in health care. The core of the project consists in the creation of a Computer-Aided Detection/Diagnosis (Computer-Aided Detection/Diagnosis) system that, based on Machine Learning and Deep Learning techniques, assists the operator in the analysis of screening data such as anamnestic information, blood tests, instrumental and diagnostic images. The assistance to the operator is achieved by suggesting the portions of information (e.g. regions in an X-ray image) on which to focus more attention. The use of the system will help the physician in the development of increasingly personalised diagnostic and therapeutic strategies, meeting the criteria of tailored therapy/surgery, a desirable objective of any cancer prevention program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.scope.unina.it.

  2. 2.

    https://luna16.grand-challenge.org/.

  3. 3.

    http://www.scope.unina.it.

Abbreviations

AI:

Artificial Intelligence

AUC-ROC:

Area Under the Receiver Operating Characteristic Curve

BCC:

Basal Cell Carcinoma

CAD:

Computer-Aided Detection/Diagnosis

CBIR:

Picture Archiving and Communication Systems

CINI:

National Informatics Inter-University Consortium

CLD:

Color Layout Descriptor

CNN:

Convolution Neural Network

CT:

Computed Tomography

CV:

Cross Validaion

D-CNN:

Deep Convolution Neural Network

DC:

Dominant Colour

DCE-MRI:

Dynamic Contrast Enhanced Magnetic Resonance Imaging

DICOM:

Digital Imaging and Communications in Medicine

DL:

Deep Learning

FN:

False Negative

FP:

False Positive

GI:

Gastrointestinal

HMMD:

Hue-Min-Max-Difference

HSV:

Hue-Saturation-Value

IoU:

Intersection over Union

k-NN:

k-Nearest Neighbors

MAP:

Mean Average Precision

ML:

Machine Leaning

MRI:

Magnetic Resonance Imaging.

NB:

Narrowband

NBI:

Narrow Band Imaging

NN:

Neural Network

P:

FPrecision

PACS:

Picture Archiving and Communication Systems

PET:

Positron Emission Tomography

R:

Recall

R-CNN:

Region CNN

ROC:

Area Under the Receiver Operating Characteristic Curve

ROI:

Regions of Interest

SCC:

Squamous Cell Carcinoma

SCD:

Scalable Color Descriptor

SEN:

Sensitivity

SPECT:

Single-Photon Emission Computed Tomography

SSD:

Single-Shot Detector

SVM:

Support-Vector Machine

TP:

True Positive

US:

UltraSound

UV:

Ultraviolet

WHO:

World Health Organization

WLR:

White Light Reflectance

YOLO:

Only-Look-Once

References

  1. Arbyn, M., Anttila, A., Jordan, J., Ronco, G., Schenck, U., Segnan, N., Wiener, H., Herbert, A., Von Karsa, L.: European guidelines for quality assurance in cervical cancer screening—Summary document. Ann. Oncol. 21(3), 448–458 (2010)

    Google Scholar 

  2. Argenziano, G., Soyer, H.P., Chimenti, S., Talamini, R., Corona, R., Sera, F., Binder, M., Cerroni, L., De Rosa, G., Ferrara, G., et al.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J. Am. Acad. Dermatol. 48(5), 679–693 (2003)

    Article  Google Scholar 

  3. Assael, Y.M., Shillingford, B., Whiteson, S., De Freitas, N.: Lipnet: End-to-end sentence-level lipreading. arXiv:1611.01599 (2016)

  4. Bergholt, M.S., Zheng, W., Ho, K.Y., Yeoh, K., Huang, Z.: Raman endoscopy for objective diagnosis of early cancer in the gastrointestinal system. J. Gastroint. Dig. Syst. S1, 008 (2013)

    Google Scholar 

  5. Chan, T.: Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Comput. Med. Imaging Graph. 31(4–5), 285–298 (2007)

    Article  Google Scholar 

  6. Cheng, G., Xie, W., Yang, H., Ji, H., He, L., Xia, H., Zhou, Y.: Deep convolution neural networks for pulmonary nodule detection in CT imaging (2019)

    Google Scholar 

  7. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: International Workshop on Machine Learning in Medical Imaging. pp. 118–126. Springer (2015)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 559–567. Springer (2017)

    Google Scholar 

  10. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

    Article  Google Scholar 

  11. Fenton, J.J., Taplin, S.H., Carney, P.A., Abraham, L., Sickles, E.A., D’Orsi, C., Berns, E.A., Cutter, G., Hendrick, R.E., Barlow, W.E., et al.: Influence of computer-aided detection on performance of screening mammography. New England J. Med. 356(14), 1399–1409 (2007)

    Article  Google Scholar 

  12. Galli, A., Gravina, M., Marrone, S., Piantadosi, G., Sansone, M., Sansone, C.: Evaluating impacts of motion correction on deep learning approaches for breast DCE-MRI segmentation and classification. In: International Conference on Computer Analysis of Images and Patterns, pp. 294–304. Springer (2019)

    Google Scholar 

  13. Gravina, M., Marrone, S., Piantadosi, G., Moscato, V., Sansone, C.: Developing a smart PACS: CBIR system using deep learning. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE

    Google Scholar 

  14. Gravina, M., Marrone, S., Piantadosi, G., Sansone, M., Sansone, C.: 3TP-CNN: radiomics and deep learning for lesions classification in DCE-MRI. In: International Conference on Image Analysis and Processing, pp. 661–671. Springer (2019)

    Google Scholar 

  15. Griffith, C.D., Mahadevan, S.: Inclusion of fatigue effects in human reliability analysis. Reliabi. Eng. Syst. Safety 96(11), 1437–1447 (2011)

    Article  Google Scholar 

  16. Haenssle, H.A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., Hassen, A.B.H., Thomas, L., Enk, A., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Henning, J.S., Dusza, S.W., Wang, S.Q., Marghoob, A.A., Rabinovitz, H.S., Polsky, D., Kopf, A.W.: The cash (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

    Article  Google Scholar 

  19. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  20. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems, pp. 1–9 (2012)

    Google Scholar 

  22. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR 2011, pp. 3361–3368. IEEE (2011)

    Google Scholar 

  23. Li, B., Meng, M.Q.H., Lau, J.Y.: Computer-aided small bowel tumor detection for capsule endoscopy. Artif. intell. Med. 52(1), 11–16 (2011)

    Article  Google Scholar 

  24. Liu, M., Dong, J., Dong, X., Yu, H., Qi, L.: Segmentation of lung nodule in CT images based on mask R-CNN. In: 2018 9th International Conference on Awareness Science and Technology (iCAST), pp. 1–6. IEEE (2018)

    Google Scholar 

  25. Liu, M., Jiang, J., Wang, Z.: Colonic polyp detection in endoscopic videos with single shot detection based deep convolutional neural network. IEEE Access 7, 75058–75066 (2019)

    Article  Google Scholar 

  26. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016)

    Google Scholar 

  27. Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11(6), 703–715 (2001)

    Article  Google Scholar 

  28. Marghoob, A.A., Swindle, L.D., Moricz, C.Z., Negron, F.A.S., Slue, B., Halpern, A.C., Kopf, A.W.: Instruments and new technologies for the in vivo diagnosis of melanoma. J. Am. Acad. Dermatol. 49(5), 777–797 (2003)

    Article  Google Scholar 

  29. Marrone, S., Olivieri, S., Piantadosi, G., Sansone, C.: Reproducibility of deep cnn for biomedical image processing across frameworks and architectures. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

    Google Scholar 

  30. Marrone, S., Piantadosi, G., Fusco, R., Petrillo, A., Sansone, M., Sansone, C.: Automatic lesion detection in breast DCE-MRI. In: Image Analysis and Processing (ICIAP), pp. 359–368. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  31. Menzies, S., Ingvar, C., McCarthy, W.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma. Melanoma Res. 6(1), 55–62 (1996)

    Article  Google Scholar 

  32. Piantadosi, G., Marrone, S., Galli, A., Sansone, M., Sansone, C.: DCE-MRI breast lesions segmentation with a 3TP U-net deep convolutional neural network. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 628–633 (2019)

    Google Scholar 

  33. Piantadosi, G., Marrone, S., Fusco, R., Sansone, M., Sansone, C.: Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns. IET Comput. Vision 12(7), 1007–1017 (2018)

    Article  Google Scholar 

  34. Pomponiu, V., Nejati, H., Cheung, N.M.: Deepmole: Deep neural networks for skin mole lesion classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2623–2627. IEEE (2016)

    Google Scholar 

  35. Qadir, H.A., Balasingham, I., Solhusvik, J., Bergsland, J., Aabakken, L., Shin, Y.: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video. IEEE J. Biomed. Health Inf. 24(1), 180–193 (2019)

    Article  Google Scholar 

  36. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497 (2015)

  38. Ribeiro, E., Uhl, A., Wimmer, G., Häfner, M.: Exploring deep learning and transfer learning for colonic polyp classification. Comput. Math. Methods Med. 2016 (2016)

    Google Scholar 

  39. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  40. Serj, M.F., Lavi, B., Hoff, G., Valls, D.P.: A deep convolutional neural network for lung cancer diagnostic. arXiv:1804.08170 (2018)

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  42. Singh, K., Bønaa, K., Solberg, S., Sørlie, D., Bjørk, L.: Intra-and interobserver variability in ultrasound measurements of abdominal aortic diameter. The Tromsø study. Eur. J. Vascular Endovascular Surgery 15(6), 497–504 (1998)

    Google Scholar 

  43. Stec, N., Arje, D., Moody, A.R., Krupinski, E.A., Tyrrell, P.N.: A systematic review of fatigue in radiology: is it a problem? Am. J. Roentgenol. 210(4), 799–806 (2018)

    Article  Google Scholar 

  44. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  46. Tiderius, C.J., Tjörnstrand, J., Åkeson, P., Södersten, K., Dahlberg, L., Leander, P.: Delayed gadolinium-enhanced MRI of cartilage (DGEMRIC): intra-and interobserver variability in standardized drawing of regions of interest. Acta radiologica 45(6), 628–634 (2004)

    Article  Google Scholar 

  47. Waite, S., Kolla, S., Jeudy, J., Legasto, A., Macknik, S.L., Martinez-Conde, S., Krupinski, E.A., Reede, D.L.: Tired in the reading room: the influence of fatigue in radiology. J. Am. Coll. Radiol. 14(2), 191–197 (2017)

    Article  Google Scholar 

  48. Wender, R., Fontham, E.T., Barrera Jr, E., Colditz, G.A., Church, T.R., Ettinger, D.S., Etzioni, R., Flowers, C.R., Scott Gazelle, G., Kelsey, D.K., et al.: American cancer society lung cancer screening guidelines. CA: Cancer J. Clin. 63(2), 106–117 (2013)

    Google Scholar 

  49. Yu, H., Li, M., Zhang, H.J., Feng, J.: Color texture moments for content-based image retrieval. In: Proceedings of International Conference on Image Processing. vol. 3, pp. 929–932. IEEE (2002)

    Google Scholar 

  50. Yuan, Z., IzadyYazdanabadi, M., Mokkapati, D., Panvalkar, R., Shin, J.Y., Tajbakhsh, N., Gurudu, S., Liang, J.: Automatic polyp detection in colonoscopy videos. In: Medical Imaging 2017: Image Processing. vol. 10133, p. 101332K. International Society for Optics and Photonics (2017)

    Google Scholar 

  51. Zalaudek, I., Argenziano, G., Soyer, H., Corona, R., Sera, F., Blum, A., Braun, R., Cabo, H., Ferrara, G., Kopf, A., et al.: Three-point checklist of dermoscopy: an open internet study. Br. J. Dermatol. 154(3), 431–437 (2006)

    Article  Google Scholar 

  52. Zhang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y., Poon, C.C.: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 21(1), 41–47 (2016)

    Article  Google Scholar 

  53. Zheng, H., Chen, H., Huang, J., Li, X., Han, X., Yao, J.: Polyp tracking in video colonoscopy using optical flow with an on-the-fly trained CNN. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 79–82. IEEE (2019)

    Google Scholar 

  54. Zheng, Y., Zhang, R., Yu, R., Jiang, Y., Mak, T.W., Wong, S.H., Lau, J.Y., Poon, C.C.: Localisation of colorectal polyps by convolutional neural network features learnt from white light and narrow band endoscopic images of multiple databases. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4142–4145. IEEE (2018)

    Google Scholar 

  55. Zoorob, R., Anderson, R., Cefalu, C.A., Sidani, M.A.: Cancer screening guidelines. Am. Fam. Phys. 63(6), 1101 (2001)

    Google Scholar 

Download references

Acknowledgements

This work is part of the “Synergy-net: Research and Digital Solutions against Cancer” project (funded in the framework of the POR Campania FESR 2014-2020—CUP B61C17000090007). We thanks professor G. Argenziano (director of Dermatology Unit), professor M. Santini (director of Thoracic Surgery Unit), professor E. Procaccini (director of Breast Unit), professor V. Napolitano (director of Endoscopy Unit), professor M. Romano (director of Gastroenterology Unit), professor M. De Sio (director of Urology Unit) and professor G. Docimo (director of Thyroid Surgery Unit) from Universitá della Campania “L.Vanvitelli” for providing data, giving insights and useful discussions. We also thanks Ernesto de Rosa (Bollino.IT) for the support and effort pushed to sustain the Synergy.Net project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Marrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bollino, R. et al. (2022). Synergy-Net: Artificial Intelligence at the Service of Oncological Prevention. In: Lim, CP., Vaidya, A., Jain, K., Mahorkar, V.U., Jain, L.C. (eds) Handbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-030-79161-2_16

Download citation

Publish with us

Policies and ethics