Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2292))

Abstract

The goal of these notes is to see how motives may be used to enhance cohomological methods, giving natural ways to prove independence of results and constructions of characteristic classes (as 0-cycles). This leads to the Grothendieck-Lefschetz formula, of which we give a new motivic proof. There are also a few additions to what have been told in the lectures:

  • A proof of Grothendieck-Verdier duality of étale motives on schemes of finite type over a regular quasi-excellent scheme (which slightly improves the level of generality in the existing literature).

  • A proof that Q-linear motivic sheaves are virtually integral (Theorem 3.3.2.12).

  • A proof of the motivic generic base change formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As shown by D. Rydh [41], this topology can be extended to all schemes, at the price of adding compatiblities with the constructible topology.

  2. 2.

    We refer to [31, 32] in general. However, most of the literature on motives is written using the theory of Quillen model structures. The precise way to translate this language to the one of -categories is discussed in Chapter 7 of [11].

  3. 3.

    Also known as Lichtenbaum cohomology.

  4. 4.

    It is standard terminology to call such -adic sheaves ‘lisses’. This comes from Deligne’s work, which is written in French. I prefer to translate into ‘smooth’ because this is what we do for morphisms of schemes. The reason is that this terminology comes from the fact that there are transersality conditions one can define between (motivic or -adic) sheaves and morphisms of schemes, and that a basic intuition about smoothness is that a smooth object is transverse to anything: indeed, a smooth sheaf is transverse to any morphism, while any sheaf is transverse to a smooth morphism. This why I think it is better to use the same word to express the smoothness of both sheaves and morphisms of schemes.

  5. 5.

    This is where -category theory appears seriously: proving that the construction ff ! actually defines a presheaf is a highly non-trivial homotopy coherence problem. Such construction is explained in [38, Chapter 10], using the general results of [29, 30].

References

  1. G. Almkvist, K-theory of endomorphisms. J. Algebra 55(2), 308–340 (1978)

    Article  MathSciNet  Google Scholar 

  2. B. Antieau, D. Gepner, J. Heller, K-theoretic obstructions to bounded t-structures. Inventiones Math. 216(1), 241–300 (2019)

    Article  MathSciNet  Google Scholar 

  3. M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, in Lecture Notes in Mathematics, vol. 270, 305, 569 (Springer, Berlin, 1972–1973). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J.-L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

    Google Scholar 

  4. J. Ayoub, Six opérations de Grothendieck et cycles évanescents dans le monde motivique I. Astérisque 314, 476 (2007)

    MATH  Google Scholar 

  5. J. Ayoub, La réalisation étale et les opérations de Grothendieck. Ann. Sci. École Norm. Sup. 47(1), 1–145 (2014)

    Article  Google Scholar 

  6. E. Balzin, Reedy model structures in families (2019). arXiv: 1803.00681v2

    Google Scholar 

  7. A. Blanc, M. Robalo, B. Toën, G. Vezzosi, Motivic realizations of singularity categories and vanishing cycles. J. Éc. Polytech. Math. 5, 651–747 (2018)

    Article  MathSciNet  Google Scholar 

  8. A.J. Blumberg, D. Gepner, G. Tabuada, A universal characterization of higher algebraic K-theory. Geom. Topol. 17(2), 733–838 (2013)

    Article  MathSciNet  Google Scholar 

  9. M.V. Bondarko, Weights for relative motives: relation with mixed complexes of sheaves. Int. Math. Res. Not. IMRN 17, 4715–4767 (2014)

    Article  MathSciNet  Google Scholar 

  10. D.-C. Cisinski, Descente par éclatements en K-théorie invariante par homotopie. Ann. Math. 177(2), 425–448 (2013)

    Article  MathSciNet  Google Scholar 

  11. D.-C. Cisinski, Higher categories and homotopical algebra, in Cambridge Studies in Advanced Mathematics, vol. 180 (Cambridge University, Cambridge, 2019)

    Book  Google Scholar 

  12. D.-C. Cisinski, F. Déglise, Integral mixed motives in equal characteristic. Documenta Math.. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday (2015), pp. 145–194

    Google Scholar 

  13. D.-C. Cisinski, F. Déglise, Étales motives. Compositio Math. 152, 556–666 (2016)

    Article  MathSciNet  Google Scholar 

  14. D.-C. Cisinski, F. Déglise, Triangulated categories of mixed motives, in Springer Monographs in Mathematics (Springer, New York, 2019)

    MATH  Google Scholar 

  15. D.-C. Cisinski, G. Tabuada, Non-connective K-theory via universal invariants. Compos. Math. 147(4), 1281–1320 (2011)

    Article  MathSciNet  Google Scholar 

  16. P. Deligne, La conjecture de Weil I. Publ. Math. IHES 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  17. P. Deligne, Cohomologie étale—SGA 4 1/2, in Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977)

    Google Scholar 

  18. P. Deligne, La conjecture de Weil II. Publ. Math. IHES 52, 137–252 (1980)

    Article  MathSciNet  Google Scholar 

  19. K. Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture. Invent. Math. 127(3), 489–533 (1997)

    MATH  Google Scholar 

  20. K. Fujiwara, A proof of the absolute purity conjecture (after Gabber), in Algebraic geometry 2000, Azumino (Hotaka). Advanced Studies in Pure Mathematics, vol. 36 (Mathematical Society, Japan, 2002), pp. 153–183

    Google Scholar 

  21. M. Gallauer, Traces in monoidal derivators, and homotopy colimits. Adv. Math. 261, 26–84 (2014)

    Article  MathSciNet  Google Scholar 

  22. A. Grothendieck, Cohomologie -adique et fonctions L, in Lecture Notes in Mathematics, vol. 589 (Springer, Berlin, 1977). Séminaire de Géométrie Algébrique du Bois–Marie 1965–1966 (SGA 5)

    Google Scholar 

  23. A. Grothendieck, Revêtements étales et groupe fondamental, in Documents Mathématiques, vol. 3 (Society Mathematical France, Paris, 2003). Séminaire de Géométrie Algébrique du Bois–Marie 1960–1961 (SGA 1). Édition recomposée et annotée du LNM 224, Springer, 1971

    Google Scholar 

  24. M. Hoyois, The six operations in equivariant motivic homotopy theory. Adv. Math. 305, 197–279 (2017)

    Article  MathSciNet  Google Scholar 

  25. L. Illusie, Miscellany on traces in -adic cohomology: a survey. Jpn. J. Math. 1, 107–136 (2006)

    Article  MathSciNet  Google Scholar 

  26. L. Illusie, Y. Laszlo, F. Orgogozo (eds.), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. (Société Mathématique de France, Paris, 2014). Séminaire à l’École Polytechnique 2006–2008. Avec la collaboration de Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng, Astérisque No. 363–364

    Google Scholar 

  27. F. Jin, E. Yang, Künneth formulas for motives and additivity of traces (2018). arXiv:1812.06441

    Google Scholar 

  28. S. Kelly, Voevodsky motives and dh-descent. Astérisque 391, iv+125 (2017)

    Google Scholar 

  29. Y. Liu, W. Zheng, Gluing restricted nerves of -categories (2015). arXiv:1211.5294v4

    Google Scholar 

  30. Y. Liu, W. Zheng, Enhanced six operations and base change theorem for higher Artin stacks (2017). arXiv: 1211.5948v3

    Google Scholar 

  31. J. Lurie, Higher topos theory, in Annals of Mathematics Studies, vol. 170 (Princeton University, Princeton, 2009)

    Google Scholar 

  32. J. Lurie, Higher Algebra (2017). https://www.math.ias.edu/~lurie/papers/HA.pdf

  33. N. Naumann, Algebraic independence in the Grothendieck ring of varieties. Trans. Am. Math. Soc. 359(4), 1653–1683 (2007)

    Article  MathSciNet  Google Scholar 

  34. M. Olsson, Borel-Moore homology, Riemann-Roch transformations, and local terms. Adv. Math. 273, 56–123 (2015)

    Article  MathSciNet  Google Scholar 

  35. M. Olsson, Motivic cohomology, localized Chern classes, and local terms. Manuscripta Math. 149(1–2), 1–43 (2016)

    Article  MathSciNet  Google Scholar 

  36. R. Pink, On the calculation of local terms in the Lefschetz-Verdier trace formula and its application to a conjecture of Deligne. Ann. Math. 135(3), 483–525 (1992)

    Article  MathSciNet  Google Scholar 

  37. N. Ramachandran, Zeta functions, Grothendieck groups, and the Witt ring. Bull. Sci. Math. 139(6), 599–627 (2015)

    Article  MathSciNet  Google Scholar 

  38. M. Robalo, Motivic Homotopy Theory of Non-commutative Spaces, PhD thesis (2014). https://webusers.imj-prg.fr/~marco.robalo/these.pdf

  39. M. Robalo, K-theory and the bridge from motives to noncommutative motives. Adv. Math. 269, 399–550 (2015)

    Article  MathSciNet  Google Scholar 

  40. O. Röndigs, Functoriality in Motivic Homotopy Theory (2005). https://www.math.uni-bielefeld.de/~oroendig/functoriality.dvi

  41. D. Rydh, Submersions and effective descent of étale morphisms. Bull. Soc. Math. France 138(2), 181–230 (2010)

    Article  MathSciNet  Google Scholar 

  42. M. Schlichting, Negative K-theory of derived categories. Math. Z. 253(1), 97–134 (2006)

    Article  MathSciNet  Google Scholar 

  43. A. Suslin, V. Voevodsky, Singular homology of abstract algebraic varieties. Invent. Math. 123(1), 61–94 (1996)

    Article  MathSciNet  Google Scholar 

  44. Y. Varshavsky, A proof of a generalization of Deligne’s conjecture. Electron. Res. Announc. Am. Math. Soc. 11, 78–88 (2005)

    Article  MathSciNet  Google Scholar 

  45. Y. Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara. Geom. Funct. Anal. 17(1), 271–319 (2007)

    Article  MathSciNet  Google Scholar 

  46. Y. Varshavsky, Intersection of a correspondence with a graph of Frobenius (2015). arXiv: 1405.6381v3

    Google Scholar 

  47. V. Voevodsky, Homology of schemes. Selecta Math. (N.S.) 2(1), 111–153 (1996)

    Google Scholar 

  48. V. Voevodsky, A 1-homotopy theory, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), vol. I (1998), pp. 579–604

    Google Scholar 

  49. V. Voevodsky, A. Suslin, E.M. Friedlander, Cycles, transfers and motivic homology theories, in Annals of Mathematics Studies, vol. 143 (Princeton University, Princeton, 2000)

    MATH  Google Scholar 

Download references

Acknowledgements

These notes are an account of a series of lectures I gave at the LMS-CMI Research School ‘Homotopy Theory and Arithmetic Geometry: Motivic and Diophantine Aspects’, in July 2018, at the Imperial College London. I am grateful to Shachar Carmeli for having allowed me to use the notes he typed from my lectures, and to Kévin François for finding a gap in the proof of the motivic generic base formula. While preparing these lectures and writing these notes, I was partially supported by the SFB 1085 “Higher Invariants” funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis-Charles Cisinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cisinski, DC. (2021). Cohomological Methods in Intersection Theory. In: Neumann, F., Pál, A. (eds) Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects. Lecture Notes in Mathematics, vol 2292. Springer, Cham. https://doi.org/10.1007/978-3-030-78977-0_3

Download citation

Publish with us

Policies and ethics