Skip to main content

Gene Therapy and Its Application in Cardiac Diseases

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

  • 916 Accesses

Abstract

Cardiovascular diseases are responsible for high mortality rates throughout the world, and diseases specifically affecting the myocardium including fibrosis, myocardial infarction, arrhythmias, and cardiomyopathies leading to cardiac dysfunction and heart failure remain significant contributors to this problem. For decades, therapeutic intervention has relied almost exclusively on surgical or pharmacologic approaches, and while these have improved survival and quality of life, side effects can be significant and cardiac death remains a major problem, leading to extensive efforts to identify novel means of treatment. The potential for cardiac gene therapy, in which disease is treated via the introduction of therapeutic genetic material to correct defective genes, improve cellular function, and restore cardiac health, has been recognized for many years, but early challenges and adverse outcomes severely limited adoption. Improvements in gene therapeutic approaches have resulted in safer and more precisely-targeted means of treating heart diseases, with considerable advancement in the field in recent years. In this chapter, we review the viral and non-viral vectors which have been utilized in treating cardiac diseases such as ischemic cardiomyopathy, myocardial infarction, and fibrosis. We also consider the use of these approaches to facilitate gene editing using CRISPR/Cas9-based methods, provide a brief overview of stem cell therapy including the use of engineered stem cells, and discuss how combinational strategies are gaining in popularity due to therapeutic advantages over individual strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinge LE, Raake PW, Koch WJ (2008) Gene therapy in heart failure. Circ Res 102:1458–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raake PW, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P (2011) Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 90:542–553

    Article  CAS  PubMed  Google Scholar 

  3. Tilemann L, Ishikawa K, Weber T, Hajjar RJ (2012) Gene therapy for heart failure. Circ Res 110:777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith KR (2003) Gene therapy: theoretical and bioethical concepts. Arch Med Res 34:247–268

    Article  CAS  PubMed  Google Scholar 

  5. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R, Mariani JA, Pepe S, Chien KR, Power JM (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50:253–260

    Article  CAS  PubMed  Google Scholar 

  6. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ (2002) Targeting phospholamban by gene transfer in human heart failure. Circulation 105:904–907

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang MT, Narayanan N (1990) Effects of aging on phospholamban phosphorylation and calcium transport in rat cardiac sarcoplasmic reticulum. Mech Ageing Dev 54:87–101

    Article  CAS  PubMed  Google Scholar 

  8. Raake PW, Vinge LE, Gao E, Boucher M, Rengo G, Chen X, DeGeorge BR Jr, Matkovich S, Houser SR, Most P et al (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katz MG, Fargnoli AS, Williams RD, Bridges CR (2013) Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 24:914–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolasinac R, Jaksch S, Dreissen G, Braeutigam A, Merkel R, Csiszar A (2019) Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. Nanomaterials (Basel) 9

    Google Scholar 

  11. Connor J, Yatvin MB, Huang L (1984) pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci U S A 81:1715–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A 85:6949–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duzgunes, Nir S (1999) Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev 40:3–18

    Google Scholar 

  14. Xu Y, Li X, Kong M, Jiang D, Dong A, Shen Z, Duan Q (2014) Cardiac-targeting magnetic lipoplex delivery of SH-IGF1R plasmid attenuate norepinephrine-induced cardiac hypertrophy in murine heart. Biosci Rep 34

    Google Scholar 

  15. Mathiyalagan P, Sahoo S (2017) Exosomes-based gene therapy for MicroRNA delivery. Methods Mol Biol 1521:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H (2020) Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Control Release 318:1–15

    Article  CAS  PubMed  Google Scholar 

  17. Chang, D.C. (1992). Guide to electroporation and electrofusion. Academic Press, San Diego

    Google Scholar 

  18. Hargrave B, Downey H, Strange R Jr, Murray L, Cinnamond C, Lundberg C, Israel A, Chen YJ, Marshall W Jr, Heller R (2013) Electroporation-mediated gene transfer directly to the swine heart. Gene Ther 20:151–157

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4:4513

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hickman MA, Malone RW, Lehmann-Bruinsma K, Sih TR, Knoell D, Szoka FC, Walzem R, Carlson DM, Powell JS (1994) Gene expression following direct injection of DNA into liver. Hum Gene Ther 5:1477–1483

    Article  CAS  PubMed  Google Scholar 

  22. Andre FM, Cournil-Henrionnet C, Vernerey D, Opolon P, Mir LM (2006) Variability of naked DNA expression after direct local injection: the influence of the injection speed. Gene Ther 13:1619–1627

    Article  CAS  PubMed  Google Scholar 

  23. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82:2217–2221

    Article  CAS  PubMed  Google Scholar 

  24. Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwand LA (1992) Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193–198

    Article  CAS  PubMed  Google Scholar 

  25. Gainer AL, Korbutt GS, Rajotte RV, Warnock GL, Elliott JF (1996) Successful biolistic transformation of mouse pancreatic islets while preserving cellular function. Transplantation 61:1567–1571

    Article  CAS  PubMed  Google Scholar 

  26. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  27. Nishizaki K, Mazda O, Dohi Y, Kawata T, Mizuguchi K, Kitamura S, Taniguchi S (2000) in vivo gene gun-mediated transduction into rat heart with Epstein-Barr virus-based episomal vectors. Ann Thorac Surg 70:1332–1337

    Article  CAS  PubMed  Google Scholar 

  28. Matsuno Y, Iwata H, Umeda Y, Takagi H, Mori Y, Miyazaki J, Kosugi A, Hirose H (2003) Nonviral gene gun mediated transfer into the beating heart. ASAIO J 49:641–644

    Article  CAS  PubMed  Google Scholar 

  29. Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM (2008) Designing heart performance by gene transfer. Physiol Rev 88:1567–1651

    Article  CAS  PubMed  Google Scholar 

  30. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  31. Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59

    Article  CAS  PubMed  Google Scholar 

  32. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 90:626–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zoltick PW, Chirmule N, Schnell MA, Gao GP, Hughes JV, Wilson JM (2001) Biology of E1-deleted adenovirus vectors in nonhuman primate muscle. J Virol 75:5222–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18:180–183

    Article  CAS  PubMed  Google Scholar 

  35. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  CAS  PubMed  Google Scholar 

  36. Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    Article  CAS  PubMed  Google Scholar 

  37. Xiao X, Li J, Samulski RJ (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Afione SA, Conrad CK, Kearns WG, Chunduru S, Adams R, Reynolds TC, Guggino WB, Cutting GR, Carter BJ, Flotte TR (1996) In vivo model of adeno-associated virus vector persistence and rescue. J Virol 70:3235–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM (1997) Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3:306–312

    Article  CAS  PubMed  Google Scholar 

  40. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  PubMed  Google Scholar 

  42. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10:828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vandendriessche T, Thorrez L, Acosta-Sanchez A, Petrus I, Wang L, Ma L, L, DEW, Iwasaki Y, Gillijns V, Wilson JM et al (2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 5:16–24

    Google Scholar 

  44. Kawada T, Nakazawa M, Nakauchi S, Yamazaki K, Shimamoto R, Urabe M, Nakata J, Hemmi C, Masui F, Nakajima T et al (2002) Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc Natl Acad Sci U S A 99:901–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mearini G, Stimpel D, Geertz B, Weinberger F, Kramer E, Schlossarek S, Mourot-Filiatre J, Stoehr A, Dutsch A, Wijnker PJ et al (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 5:5515

    Article  CAS  PubMed  Google Scholar 

  46. Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, Barnard D, Bouchard A, Jaski B, Lyon AR et al (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387:1178–1186

    Article  CAS  PubMed  Google Scholar 

  47. Armeanu S, Ungerechts G, Bernloehr C, Bossow S, Gregor M, Neubert WJ, Lauer UM, Bitzer M (2003) Cell cycle independent infection and gene transfer by recombinant Sendai viruses. J Virol Methods 108:229–233

    Article  CAS  PubMed  Google Scholar 

  48. Cao Y, Xu J, Wen J, Ma X, Liu F, Li Y, Chen W, Sun L, Wu Y, Li S et al (2018) Generation of a urine-derived Ips cell line from a patient with a ventricular septal defect and heart failure and the robust differentiation of these cells to cardiomyocytes via small molecules. Cell Physiol Biochem 50:538–551

    Article  CAS  PubMed  Google Scholar 

  49. Guo F, Sun Y, Wang X, Wang H, Wang J, Gong T, Chen X, Zhang P, Su L, Fu G et al (2019) Patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of short QT syndrome. Circ Res 124:66–78

    Article  CAS  PubMed  Google Scholar 

  50. Laufs S, Gentner B, Nagy KZ, Jauch A, Benner A, Naundorf S, Kuehlcke K, Schiedlmeier B, Ho AD, Zeller WJ et al (2003) Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 101:2191–2198

    Article  CAS  PubMed  Google Scholar 

  51. Morgan RA, Couture L, Elroy-Stein O, Ragheb J, Moss B, Anderson WF (1992) Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res 20:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hashimoto H, Wang Z, Garry GA, Malladi VS, Botten GA, Ye W, Zhou H, Osterwalder M, Dickel DE, Visel A et al (2019) Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25:69–86 e65

    Google Scholar 

  54. Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW et al (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ, Yang C, Bahner I, Kohn DB (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 13:1121–1132

    Article  CAS  PubMed  Google Scholar 

  57. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  59. Throm RE, Ouma AA, Zhou S, Chandrasekaran A, Lockey T, Greene M, De Ravin SS, Moayeri M, Malech HL, Sorrentino BP et al (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 113:5104–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fleury S, Simeoni E, Zuppinger C, Deglon N, von Segesser LK, Kappenberger L, Vassalli G (2003) Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 107:2375–2382

    Article  CAS  PubMed  Google Scholar 

  61. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A, Innocenzi A, Follenzi A, Lavitrano M, Monti MG et al (2003) Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 10:630–636

    Article  CAS  PubMed  Google Scholar 

  62. Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J (2018) Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci (Weinh) 5:1700611

    Article  Google Scholar 

  63. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419

    Article  CAS  PubMed  Google Scholar 

  64. Troder SE, Ebert LK, Butt L, Assenmacher S, Schermer B, Zevnik B (2018) An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One 13:e0196891

    Google Scholar 

  65. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C et al (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11:2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

    Article  CAS  PubMed  Google Scholar 

  68. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN (2016) A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A 113:338–343

    Article  CAS  PubMed  Google Scholar 

  69. Schuh RS, Gonzalez EA, Tavares AMV, Seolin BG, Elias LS, Vera LNP, Kubaski F, Poletto E, Giugliani R, Teixeira HF et al (2020) Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther 27:74–84

    Article  CAS  PubMed  Google Scholar 

  70. Johansen AK, Molenaar B, Versteeg D, Leitoguinho AR, Demkes C, Spanjaard B, de Ruiter H, Akbari Moqadam F, Kooijman L, Zentilin L et al (2017) Postnatal cardiac gene editing using CRISPR/Cas9 With AAV9-mediated delivery of short guide RNAs results in mosaic gene disruption. Circ Res 121:1168–1181

    Article  CAS  PubMed  Google Scholar 

  71. Malaver-Ortega LF, Sumer H, Liu J, Verma PJ (2012) The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 78:1749–1762

    Article  PubMed  Google Scholar 

  72. Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26:1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM et al (2017) Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study). Circ Res 121:1279–1290

    Article  CAS  PubMed  Google Scholar 

  74. Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM (2017) Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ Res 120:1139–1150

    Article  PubMed  Google Scholar 

  75. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017

    Article  PubMed  Google Scholar 

  76. Menasche P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O et al (2015) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 36:743–750

    Article  CAS  PubMed  Google Scholar 

  77. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  78. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209

    Article  CAS  PubMed  Google Scholar 

  79. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marban L, Mendizabal A, Cingolani E, Johnston PV et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63:110–122

    Article  PubMed  Google Scholar 

  80. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sawa Y, Yoshikawa Y, Toda K, Fukushima S, Yamazaki K, Ono M, Sakata Y, Hagiwara N, Kinugawa K, Miyagawa S (2015) Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J 79:991–999

    Article  PubMed  Google Scholar 

  82. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK et al (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suncion VY, Ghersin E, Fishman JE, Zambrano JP, Karantalis V, Mandel N, Nelson KH, Gerstenblith G, DiFede Velazquez DL, Breton E et al (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: an analysis from the percutaneous stem cell injection delivery effects on neomyogenesis (POSEIDON) randomized trial. Circ Res 114:1292–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K et al (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:388–391

    Article  CAS  PubMed  Google Scholar 

  85. Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 73:1305–1317

    Article  CAS  PubMed  Google Scholar 

  86. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang P, Wang L, Li Q, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, Yu Y et al (2019) Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther 10:300

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cho HM, Lee KH, Shen YM, Shin TJ, Ryu PD, Choi MC, Kang KS, Cho JY (2020) Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocardial infarction. Mol Ther Nucleic Acids 19:1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, Darzi A, Harding SE, Stevens MM, Athanasiou T (2017) Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Reports 9:1415–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sheikh AY, Lin SA, Cao F, Cao Y, van der Bogt KE, Chu P, Chang CP, Contag CH, Robbins RC, Wu JC (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells 25:2677–2684

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fernandes S, Chong JJH, Paige SL, Iwata M, Torok-Storb B, Keller G, Reinecke H, Murry CE (2015) Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports 5:753–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R et al (2016) Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell 18:354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ong SG, Huber BC, Lee WH, Kodo K, Ebert AD, Ma Y, Nguyen PK, Diecke S, Chen WY, Wu JC (2015) Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 132:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H et al (2013) Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 113:539–552

    Article  CAS  PubMed  Google Scholar 

  95. Meng X, Li J, Yu M, Yang J, Zheng M, Zhang J, Sun C, Liang H, Liu L (2018) Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction. J Cell Physiol 233:587–595

    Article  CAS  PubMed  Google Scholar 

  96. Kaur K, Sharma AK, Singal PK (2006) Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 291:H106-113

    Article  CAS  PubMed  Google Scholar 

  97. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104:e9-18

    Article  CAS  PubMed  Google Scholar 

  98. Meng X, Zheng M, Yu M, Bai W, Zuo L, Bu X, Liu Y, Xia L, Hu J, Liu L et al (2019) Transplantation of CRISPRa system engineered IL10-overexpressing bone marrow-derived mesenchymal stem cells for the treatment of myocardial infarction in diabetic mice. J Biol Eng 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS (2015) Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant 24:1571–1584

    Article  PubMed  Google Scholar 

  100. Allessie M, Schotten U, Verheule S, Harks E (2005) Gene therapy for repair of cardiac fibrosis: a long way to Tipperary. Circulation 111:391–393

    Article  PubMed  Google Scholar 

  101. Kizana E, Ginn SL, Allen DG, Ross DL, Alexander IE (2005) Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation 111:394–398

    Article  PubMed  Google Scholar 

  102. Amin R, Muthuramu I, Aboumsallem JP, Mishra M, Jacobs F, De Geest B (2017) Selective HDL-raising human Apo A-I gene therapy counteracts cardiac hypertrophy, reduces myocardial fibrosis, and improves cardiac function in mice with chronic pressure overload. Int J Mol Sci 18

    Google Scholar 

  103. Zhang H, Tian L, Shen M, Tu C, Wu H, Gu M, Paik DT, Wu JC (2019) Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circ Res 125:552–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Czubryt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chattopadhyaya, S., Czubryt, M.P. (2022). Gene Therapy and Its Application in Cardiac Diseases. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_8

Download citation

Publish with us

Policies and ethics