Skip to main content

Performance Analysis of Evolutionary Computation Based on Tianchi Service Scheduling Problem

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12689))

Included in the following conference series:

Abstract

We choose the well-known evolution strategy (ES) in the evolutionary computation (EC) community to solve the large-scale scheduling problem provided by Alibaba cloud services. Since the problem is accompanied by multiple strong constraints, we design two additional strategies for improving the search efficiency with a given limited computational cost. Compared with widely used numerical benchmark test suits, this problem arises from the requirements of real-world applications and has strict constraints that cannot be violated, such as processing time, response timeout, load balance, and so on. The main contribution of this paper is to establish a bridge between EC algorithms and the characteristics of real-world problems so that EC algorithms can solve real-world problems more effectively and smoothly. Based on the difficulties encountered in the experiment, we summarize some of our experiences and insights, and hope that they may bring new enlightenment to the latecomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Votaw, D.F.: Methods of solving some personnel-classification problems. Psychometrika 17(3), 255–266 (1952). https://doi.org/10.1007/BF02288757

    Article  MATH  Google Scholar 

  2. Wolfe, P.: Recent developments in nonlinear programming. Adv. Comput. 3, 155–187 (1962)

    Article  MathSciNet  Google Scholar 

  3. Back, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1), 3–17 (1997)

    Article  Google Scholar 

  4. Xiao, Q.G., Li, C.B., Tang, Y., Pan, J., Yu, J., Chen, X.Z.: Multi-component energy modeling and optimization for sustainable dry gear hobbing. Energy 187, 1–16 (2019)

    Google Scholar 

  5. Holland, J.H.: Outline for a logical theory of adaptive systems. J. ACM 9(3), 297–314 (1962)

    Article  Google Scholar 

  6. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83(23–24), 1943–1978 (2005)

    Article  Google Scholar 

  7. Beyer, H.G., Schwefel, H.P.: Evolution strategies: a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

    Article  MathSciNet  MATH  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  9. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  10. Dervis, K., Bahriye, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  12. Yu, J., Takagi, H.: Acceleration for fireworks algorithm based on amplitude reduction strategy and local optima-based selection strategy. In: Tan, Y., Takagi, H., Shi, Y. (eds.) ICSI 2017. LNCS, vol. 10385, pp. 477–484. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61824-1_52

    Chapter  Google Scholar 

  13. Yu, J., Takagi, H., Tan, Y.: Accelerating the fireworks algorithm with an estimated convergence point. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10941, pp. 263–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93815-8_26

    Chapter  Google Scholar 

  14. Jin, Y., Markus, O., Bernhard, S.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 484–494 (2002)

    Google Scholar 

  15. Yu, J., Pei, Y., Takagi, H.: Accelerating evolutionary computation using estimated convergence points. In: IEEE Congress on Evolutionary Computation, pp. 1438–1444 (2016)

    Google Scholar 

  16. Pei, Y., Yu, J., Takagi, H.: Search acceleration of evolutionary multi-objective optimization using an estimated convergence point. Mathematics 7(2), 129–147 (2019)

    Article  Google Scholar 

  17. Yu, J., Takagi, H., Tan, Y.: Fireworks algorithm for multimodal optimization using a distance-based exclusive strategy. In: IEEE Congress on Evolutionary Computation, pp. 2215–2220 (2019)

    Google Scholar 

  18. Niu, B., Wang, H., Wang, J., Tan, L.: Multi-objective bacterial foraging optimization. Neurocomputing 116, 336–345 (2013)

    Article  Google Scholar 

  19. Niu, B., Wang, J., Wang, H.: Bacterial-inspired algorithms for solving constrained optimization problems. Neurocomputing 148, 54–62 (2015)

    Article  Google Scholar 

  20. The homepage of the competition problem (in Chinese) (2020). https://tianchi.aliyun.com/competition/entrance/531831/information

Download references

Acknowledgments

This work was supported in part by Natural Science Foundation of China under Grant 62001302, in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515110401, 2019A1515111205, 2021A1515011348, and in part by Natural Science Foundation of Shenzhen under Grant JCYJ20190808145011259, and in part by Shenzhen Science and Technology Program under Grant RCBS20200714114920379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Li, Y., Zhou, T., Zhang, C., Yue, G., Ge, Y. (2021). Performance Analysis of Evolutionary Computation Based on Tianchi Service Scheduling Problem. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12689. Springer, Cham. https://doi.org/10.1007/978-3-030-78743-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78743-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78742-4

  • Online ISBN: 978-3-030-78743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics