Skip to main content

Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma

  • Chapter
  • First Online:
  • 454 Accesses

Abstract

Recently, efforts in developing effective therapeutics for unresectable hepatocellular carcinoma (HCC) focused on systemic therapy by means of multikinase and immune checkpoint inhibition. However, a desirable response has not yet been achieved in HCC treatment due to rapid development of resistance against systemic therapeutics. Receptor crosstalk, a key mechanism in drug resistance, enables ligand-independent activation of receptor tyrosine kinases (RTKs). c-Met and AXL are members of the RTK family, both well-known for heterodimerizing with other RTKs causing aberrant signaling, aggressive character, and therapy resistance. A large body of preclinical and clinical data suggested correlations between c-Met and AXL in expression and activation in tumors, upregulating migration and invasion. Co-targeting these receptors is promising and has shown to enable improvements in antitumor efficacy of several therapy methods. HCC patients with elevated expression and activation of c-Met and AXL would benefit from dual inhibition that limits this crosstalk and allows to overcome therapy resistance. In this book chapter, we provide an overview of the role of c-Met and Axl signaling in HCC and share our experience and view on scientific rationale for targeting crosstalk between these two RTKs for the treatment of HCC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. T.C. Saglık Bakanligi Halk Sagligi Genel Mudurlugu, Türki̇ye Kanser Istati̇sti̇kleri̇. 2016. https://hsgm.saglik.gov.tr/tr/kanser-istatistikleri/yillar/2016-yili-turkiye-kanser-i-statistikleri.html. Accessed 5 Oct 2020.

  4. Global Health Data Exchange. Global Burden of Disease Study 2019 Results. Seattle, WA: Institute for Health Metrics and Evaluation; 2020. 2020. Available at: http://ghdx.healthdata.org/gbd-results-tool. n.d. Accessed 10 Oct 2020.

  5. Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of Primary and Secondary Liver Cancers. Semin Interv Radiol. 2006;23:047–63. https://doi.org/10.1055/s-2006-939841.

    Article  Google Scholar 

  6. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18.

    Article  PubMed  Google Scholar 

  7. Colombo M, Iavarone M. Hepatocellular Carcinoma. Evidence-Based Gastroenterol. Hepatol. 365, Wiley; 2010, p. 650–60. https://doi.org/10.1002/9781444314403.ch40.

  8. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2020:hep.31288. https://doi.org/10.1002/hep.31288.

  9. Chiang CJ, Yang YW, You SL, Lai MS, Chen CJ. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. JAMA - J Am Med Assoc. 2013;310:974–6. https://doi.org/10.1001/jama.2013.276701.

    Article  CAS  Google Scholar 

  10. Sharafi H, Alavian SM. The Rising Threat of Hepatocellular Carcinoma in the Middle East and North Africa Region: Results From Global Burden of Disease Study 2017. Clin Liver Dis. 2019;14:219–23. https://doi.org/10.1002/cld.890.

    Article  Google Scholar 

  11. Can A, Dogan E, Bayoglu IV, Tatli AM, Besiroglu M, Kocer M, et al. Multicenter epidemiologic study on hepatocellular carcinoma in Turkey. Asian Pac J Cancer Prev. 2014;15:2923–7. https://doi.org/10.7314/APJCP.2014.15.6.2923.

    Article  PubMed  Google Scholar 

  12. Seyda Seydel G, Kucukoglu O, Altinbas A, Oguz Demir O, Yilmaz S, Akkiz H, et al. Economic growth leads to increase of obesity and associated hepatocellular carcinoma in developing countries. Ann Hepatol. 2016;15:662–72. https://doi.org/10.5604/16652681.1212316.

    Article  CAS  PubMed  Google Scholar 

  13. Ayoub WS, Steggerda J, Yang JD, Kuo A, Sundaram V, Lu SC. Current status of hepatocellular carcinoma detection: screening strategies and novel biomarkers. Ther Adv Med Oncol. 2019;11:175883591986912. https://doi.org/10.1177/1758835919869120.

    Article  CAS  Google Scholar 

  14. Llovet JM, Ducreux M, Lencioni R, Di Bisceglie AM, Galle PR, Dufour JF, et al. EASL-EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43. https://doi.org/10.1016/j.jhep.2011.12.001.

    Article  Google Scholar 

  15. Alacacioglu A, Somali I, Simsek I, Astarcioglu I, Ozkan M, Camci C, et al. Epidemiology and survival of hepatocellular carcinoma in Turkey: Outcome of multicenter study. Jpn J Clin Oncol. 2008;38:683–8. https://doi.org/10.1093/jjco/hyn082.

    Article  PubMed  Google Scholar 

  16. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37:429–42. https://doi.org/10.1053/jhep.2003.50047.

    Article  CAS  PubMed  Google Scholar 

  17. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  18. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66. https://doi.org/10.1016/S0140-6736(16)32453-9.

    Article  CAS  PubMed  Google Scholar 

  19. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1.

  20. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905. https://doi.org/10.1056/NEJMoa1915745.

    Article  CAS  PubMed  Google Scholar 

  21. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63. https://doi.org/10.1056/NEJMoa1717002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–96. https://doi.org/10.1016/S1470-2045(18)30937-9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52. https://doi.org/10.1016/S1470-2045(18)30351-6.

    Article  PubMed  Google Scholar 

  24. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502. https://doi.org/10.1016/S0140-6736(17)31046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21:671–84. https://doi.org/10.1016/S1470-2045(20)30109-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yılmaz Y, Güneş A, Topel H, Atabey N. Signaling Pathways as Potential Therapeutic Targets in Hepatocarcinogenesis. J Gastrointest Cancer. 2017;48:225–37. https://doi.org/10.1007/s12029-017-9958-1.

    Article  PubMed  Google Scholar 

  27. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol. 2005;23:6657–63. https://doi.org/10.1200/JCO.2005.14.696.

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda S, Tsigelny IF, Skjevik ÅA, Kono Y, Mendler M, Kuo A, et al. Next-Generation Sequencing of Circulating Tumor DNA Reveals Frequent Alterations in Advanced Hepatocellular Carcinoma. Oncologist. 2018;23:586–93. https://doi.org/10.1634/theoncologist.2017-0479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li R, Yanjiao G, Wubin H, Yue W, Jianhua H, Huachuan Z, et al. Secreted GRP78 activates EGFR-SRC-STAT3 signaling and confers the resistance to sorafenib in HCC cells. Oncotarget. 2017;8:19354–64. https://doi.org/10.18632/oncotarget.15223.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Arii S. Role of vascular endothelial growth factor on the invasive potential of hepatocellular carcinoma. J Hepatol. 2004;41:333–5. https://doi.org/10.1016/j.jhep.2004.06.022.

    Article  CAS  PubMed  Google Scholar 

  31. Jia J-B, Zhuang P-Y, Sun H-C, Zhang J-B, Zhang W, Zhu X-D, et al. Protein expression profiling of vascular endothelial growth factor and its receptors identifies subclasses of hepatocellular carcinoma and predicts survival. J Cancer Res Clin Oncol. 2009;135:847–54. https://doi.org/10.1007/s00432-008-0521-0.

    Article  CAS  PubMed  Google Scholar 

  32. Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 2010;52:966–74. https://doi.org/10.1002/hep.23769.

    Article  CAS  PubMed  Google Scholar 

  33. Mancarella S, Krol S, Crovace A, Leporatti S, Dituri F, Frusciante M, et al. Validation of Hepatocellular Carcinoma Experimental Models for TGF-β Promoting Tumor Progression. Cancers (Basel). 2019;11:1510. https://doi.org/10.3390/cancers11101510.

  34. Cagatay T, Ozturk M. p53 mutation as a source of aberrant β-catenin accumulation in cancer cells. Oncogene. 2002;21:7971–80. https://doi.org/10.1038/sj.onc.1205919.

    Article  CAS  PubMed  Google Scholar 

  35. Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90. https://doi.org/10.1186/1476-4598-8-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK, et al. Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One. 2012;7 https://doi.org/10.1371/journal.pone.0035826.

  37. Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, et al. Hippo signaling pathway as a central mediator of receptors tyrosine kinases (RTKS) in tumorigenesis. Cancers (Basel). 2020;12:1–22. https://doi.org/10.3390/cancers12082042.

    Article  CAS  Google Scholar 

  38. Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals (Review). Biomed Reports. 2017;7:495–503. https://doi.org/10.3892/br.2017.1001.

    Article  CAS  Google Scholar 

  39. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702. https://doi.org/10.1038/373699a0.

    Article  CAS  PubMed  Google Scholar 

  40. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5. https://doi.org/10.1038/373702a0.

    Article  CAS  PubMed  Google Scholar 

  41. Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101:4477–82. https://doi.org/10.1073/pnas.0306068101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma H, Saenko M, Opuko A, Togawa A, Soda K, Marlier A, et al. Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction. Kidney Int. 2009;76:868–76. https://doi.org/10.1038/ki.2009.304.

    Article  CAS  PubMed  Google Scholar 

  43. Demirci C, Ernst S, Alvarez-Perez JC, Rosa T, Valle S, Shridhar V, et al. Loss of HGF/c-Met signaling in pancreatic β-cells leads to incomplete maternal β-cell adaptation and gestational diabetes mellitus. Diabetes. 2012;61:1143–52. https://doi.org/10.2337/db11-1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JMD, Rausell-Palamos F, et al. Hepatocyte Growth Factor/c-Met Signaling Is Required for -Cell Regeneration. Diabetes. 2014;63:216–23. https://doi.org/10.2337/db13-0333.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y. The human hepatocyte growth factor receptor gene: Complete structural organization and promoter characterization. Gene. 1998;215:159–69. https://doi.org/10.1016/S0378-1119(98)00264-9.

    Article  CAS  PubMed  Google Scholar 

  46. Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, et al. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci. 2003;100:12039–44. https://doi.org/10.1073/pnas.2034936100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell. 2004;6:75–84. https://doi.org/10.1016/j.ccr.2004.06.013.

    Article  CAS  PubMed  Google Scholar 

  48. Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt L-G, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci. 2006;103:4046–51. https://doi.org/10.1073/pnas.0509040103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37 https://doi.org/10.1042/BSR20160470.

  50. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149:1419–32. https://doi.org/10.1083/jcb.149.7.1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a target for personalized therapy. Transl Oncogenomics. 2015;2015:13–31. https://doi.org/10.4137/TOGOG.S30534.

    Article  Google Scholar 

  52. Zhang YW, Wang LM, Jove R, Vande Woude GF. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene. 2002;21:217–26. https://doi.org/10.1038/sj.onc.1205004.

    Article  CAS  PubMed  Google Scholar 

  53. Furcht CM, Buonato JM, Skuli N, Mathew LK, Muñoz Rojas AR, Simon MC, et al. Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. J Cell Sci. 2014;127:3555–67. https://doi.org/10.1242/jcs.150862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8:995–1004. https://doi.org/10.1016/S1097-2765(01)00378-1.

    Article  CAS  PubMed  Google Scholar 

  55. Ozen E, Gozukizil A, Erdal E, Uren A, Bottaro DP, Atabey N. Heparin Inhibits Hepatocyte Growth Factor Induced Motility and Invasion of Hepatocellular Carcinoma Cells through Early Growth Response Protein 1. PLoS One. 2012;7:e42717. https://doi.org/10.1371/journal.pone.0042717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korhan P, Erdal E, Kandemiş E, Cokaklı M, Nart D, Yılmaz F, et al. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma. PLoS One. 2014;9:e105278. https://doi.org/10.1371/journal.pone.0105278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. İşcan E, Güneş A, Korhan P, Yılmaz Y, Erdal E, Atabey N. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells. J Cell Commun Signal. 2017;11:155–66. https://doi.org/10.1007/s12079-016-0368-0.

    Article  PubMed  Google Scholar 

  58. Viticchiè G, Muller P. c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines. 2015;3:46–70. https://doi.org/10.3390/biomedicines3010046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19:2310–8. https://doi.org/10.1158/1078-0432.CCR-12-2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol. 2009;19:542–51. https://doi.org/10.1016/j.tcb.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  61. Bozkaya G, Korhan P, Çokaklı M, Erdal E, Sağol Ö, Karademir S, et al. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol Cancer. 2012;11:64. https://doi.org/10.1186/1476-4598-11-64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fafalios A, Ma J, Tan X, Stoops J, Luo J, Defrances MC, et al. A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat Med. 2011;17:1577–84. https://doi.org/10.1038/nm.2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between Epidermal Growth Factor Receptor and c-Met Signal Pathways in Transformed Cells. J Biol Chem. 2000;275:8806–11. https://doi.org/10.1074/jbc.275.12.8806.

    Article  CAS  PubMed  Google Scholar 

  64. Bonine-Summers AR, Aakre ME, Brown KA, Arteaga CL, Pietenpol JA, Moses HL, et al. Epidermal growth factor receptor plays a significant role in hepatocyte growth factor mediated biological responses in mammary epithelial cells. Cancer Biol Ther. 2007;6:561–70. https://doi.org/10.4161/cbt.6.4.3851.

    Article  CAS  PubMed  Google Scholar 

  65. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, et al. Preexistence and Clonal Selection of MET Amplification in EGFR Mutant NSCLC. Cancer Cell. 2010;17:77–88. https://doi.org/10.1016/j.ccr.2009.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanizaki J, Okamoto I, Sakai K, Nakagawa K. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br J Cancer. 2011;105:807–13. https://doi.org/10.1038/bjc.2011.322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bachleitner-Hofmann T, Sun MY, Chen CT, Tang L, Song L, Zeng Z, et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol Cancer Ther. 2008;7:3499–508. https://doi.org/10.1158/1535-7163.MCT-08-0374.

    Article  CAS  PubMed  Google Scholar 

  68. Follenzi A, Bakovic S, Gual P, Stella MC, Longati P, Comoglio PM. Cross-talk between the proto-oncogenes Met and Ron. Oncogene. 2000;19:3041–9. https://doi.org/10.1038/sj.onc.1203620.

    Article  CAS  PubMed  Google Scholar 

  69. Bauer TW, Somcio RJ, Fan F, Liu W, Johnson M, Lesslie DP, et al. Regulatory role of c-Met in insulin-like growth factor-I receptor - Mediated migration and invasion of human pancreatic carcinoma cells. Mol Cancer Ther. 2006;5:1676–82. https://doi.org/10.1158/1535-7163.MCT-05-0175.

    Article  CAS  PubMed  Google Scholar 

  70. Sierra JR, Tsao M-S. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3:S21–35. https://doi.org/10.1177/1758834011422557.

  71. Daveau M, Scotte M, François A, Coulouarn C, Ros G, Tallet Y, et al. Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog. 2003;36:130–41. https://doi.org/10.1002/mc.10103.

    Article  CAS  PubMed  Google Scholar 

  72. Ma PC, Tretiakova MS, MacKinnon AC, Ramnath N, Johnson C, Dietrich S, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosom Cancer. 2008;47:1025–37. https://doi.org/10.1002/gcc.20604.

    Article  CAS  PubMed  Google Scholar 

  73. Aune G, Lian A-M, Tingulstad S, Torp SH, Forsmo S, Reseland JE, et al. Increased circulating hepatocyte growth factor (HGF): A marker of epithelial ovarian cancer and an indicator of poor prognosis. Gynecol Oncol. 2011;121:402–6. https://doi.org/10.1016/j.ygyno.2010.12.355.

    Article  CAS  PubMed  Google Scholar 

  74. Tanimoto S, Fukumori T, El-Moula G, Shiirevnyamba A, Kinouchi S, Koizumi T, et al. Prognostic significance of serum hepatocyte growth factor in clear cell renal cell carcinoma: comparison with serum vascular endothelial growth factor. J Med Investig. 2008;55:106–11. https://doi.org/10.2152/jmi.55.106.

    Article  Google Scholar 

  75. Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, et al. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2007;248:219–28. https://doi.org/10.1016/j.canlet.2006.07.007.

    Article  CAS  PubMed  Google Scholar 

  76. Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, Yamashita J, et al. The prognostic significance of amplification and overexpression of c- met and c-erb B-2 in human gastric carcinomas. Cancer. 1999;85:1894–902. https://doi.org/10.1002/(SICI)1097-0142(19990501)85:9<1894::AID-CNCR3>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  77. Ramirez R, Hsu D, Patel A, Fenton, C, Dinauer C, Tuttle RM, et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2000;53:635–44. https://doi.org/10.1046/j.1365-2265.2000.01124.x.

  78. Liu N, Furukawa T, Kobari M, Tsao MS. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. Am J Pathol. 1998;153:263–9. https://doi.org/10.1016/S0002-9440(10)65567-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chau NG, Perez-Ordonez B, Zhang K, Pham N-A, Ho J, Zhang T, et al. The association between EGFR variant III, HPV, p16, c-MET, EGFR gene copy number and response to EGFR inhibitors in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck Oncol. 2011;3:11. https://doi.org/10.1186/1758-3284-3-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsao MS, Liu N, Chen JR, Pappas J, Ho J, To C, et al. Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer. 1998;20:1–16. https://doi.org/10.1016/S0169-5002(98)00007-5.

    Article  CAS  PubMed  Google Scholar 

  81. Gumustekin M, Kargi A, Bulut G, Gozukizil A, Ulukus C, Oztop I, et al. HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res. 2012;18:209–18. https://doi.org/10.1007/s12253-011-9430-7.

    Article  CAS  PubMed  Google Scholar 

  82. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad I, Ben, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8. https://doi.org/10.1038/ng.2256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang YW, Vande Woude GF. HGF/SF-Met signaling in the control of branching morphogenesis and invasion. J. Cell. Biochem., vol. 88, J Cell Biochem; 2003, p. 408–17. https://doi.org/10.1002/jcb.10358.

  84. Ghiso E, Giordano S. Targeting MET: why, where and how? Curr Opin Pharmacol. 2013;13:511–8. https://doi.org/10.1016/j.coph.2013.05.018.

    Article  CAS  PubMed  Google Scholar 

  85. Yao HP, Hudson R, Wang MH. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim Biophys Acta - Rev Cancer. 1874;2020:188425. https://doi.org/10.1016/j.bbcan.2020.188425.

    Article  CAS  Google Scholar 

  86. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: A review. Breast Cancer Res. 2015;17 https://doi.org/10.1186/s13058-015-0547-6.

  87. Salgia R. MET in lung cancer: Biomarker selection based on scientific rationale. Mol Cancer Ther. 2017;16:555–65. https://doi.org/10.1158/1535-7163.MCT-16-0472.

    Article  CAS  PubMed  Google Scholar 

  88. Kim JH, Kim HS, Kim BJ, Lee J, Jang HJ. Prognostic value of c-Met overexpression in pancreatic adenocarcinoma: a meta-analysis. Oncotarget. 2017;8:73098–104. https://doi.org/10.18632/oncotarget.20392.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim JH, Kim BJ, Kim HS. Clinicopathological impacts of high c-Met expression in renal cell carcinoma: a meta-analysis and review. Oncotarget. 2017;8:75478–87. https://doi.org/10.18632/oncotarget.20796.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Heo MH, Kim HK, Lee H, Kim KM, Lee J, Park SH, et al. The clinical impact of c-MET over-expression in advanced biliary tract cancer (BTC). J Cancer. 2017;8:1395–9. https://doi.org/10.7150/jca.17898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park HJ, Kim K, Paik JH, Chie EK, Kim S, Jang JY, et al. Is c-Met oncoprotein expression an adverse prognosticator in extrahepatic bile duct cancer treated with curative resection followed by adjuvant chemoradiotherapy? Clin Transl Oncol. 2016;18:625–31. https://doi.org/10.1007/s12094-015-1409-5.

    Article  CAS  PubMed  Google Scholar 

  92. Miyamoto M, Ojima H, Iwasaki M, Shimizu H, Kokubu A, Hiraoka N, et al. Prognostic significance of overexpression of c-Met oncoprotein in cholangiocarcinoma. Br J Cancer. 2011;105:131–8. https://doi.org/10.1038/bjc.2011.199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodés J, et al. c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology. 1994;19:88–91. https://doi.org/10.1002/hep.1840190115.

    Article  CAS  PubMed  Google Scholar 

  94. Suzuki K, Hayashi N, Yamada Y, Yoshihara H, Miyamoto Y, Ito Y, et al. Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology. 1994;20:1231–6. https://doi.org/10.1002/hep.1840200520.

    Article  CAS  PubMed  Google Scholar 

  95. Wu F, Wu L, Zheng S, Ding W, Teng L, Wang Z, et al. The clinical value of hepatocyte growth factor and its receptor-c-met for liver cancer patients with hepatectomy. Dig Liver Dis. 2006;38:490–7. https://doi.org/10.1016/j.dld.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  96. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto- oncogene in hepatocellular carcinoma. Hepatology. 1997;25:862–6. https://doi.org/10.1002/hep.510250413.

    Article  CAS  PubMed  Google Scholar 

  97. Kondo S, Ojima H, Tsuda H, Hashimoto J, Morizane C, Ikeda M, et al. Clinical impact of c-Met expression and its gene amplification in hepatocellular carcinoma. Int J Clin Oncol. 2013;18:207–13. https://doi.org/10.1007/s10147-011-0361-9.

    Article  CAS  PubMed  Google Scholar 

  98. Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, et al. Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J Pathol. 2007;213:190–9. https://doi.org/10.1002/path.2215.

    Article  CAS  PubMed  Google Scholar 

  99. Gong XY, Ma N, Xu HX, Chen F, Huang XH, Wang Q. Prognostic significance of c-Met, β-catenin and FAK in patients with hepatocellular carcinoma following surgery. Oncol Lett. 2018;15:3796–805. https://doi.org/10.3892/ol.2018.7733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: A randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63. https://doi.org/10.1016/S1470-2045(12)70490-4.

    Article  CAS  PubMed  Google Scholar 

  101. Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2017;14:562–76. https://doi.org/10.1038/nrclinonc.2017.40.

    Article  CAS  PubMed  Google Scholar 

  102. Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003;94:321–7. https://doi.org/10.1111/j.1349-7006.2003.tb01440.x.

    Article  CAS  PubMed  Google Scholar 

  103. Munshi N, Jeay S, Li Y, Chen CR, France DS, Ashwell MA, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9:1544–53. https://doi.org/10.1158/1535-7163.MCT-09-1173.

    Article  CAS  PubMed  Google Scholar 

  104. Calles A, Kwiatkowski N, Cammarata BK, Ercan D, Gray NS, Jänne PA. Tivantinib (ARQ 197) efficacy is independent of MET inhibition in non-small-cell lung cancer cell lines. Mol Oncol. 2015;9:260–9. https://doi.org/10.1016/j.molonc.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  105. Prabhash K, Noronha V, Joshi A, Desai S, Sahu A. Crizotinib: A comprehensive review. South Asian J Cancer. 2013;2:91. https://doi.org/10.4103/2278-330x.110506.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Grüllich C. Cabozantinib: Multi-kinase Inhibitor of MET, AXL, RET, and VEGFR2. Recent Results Cancer Res. 2018;211:67–75. https://doi.org/10.1007/978-3-319-91442-8_5.

    Article  CAS  PubMed  Google Scholar 

  107. Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018;19:682–93. https://doi.org/10.1016/S1470-2045(18)30146-3.

    Article  CAS  PubMed  Google Scholar 

  108. Lorenzato A, Olivero M, Patanè S, Rosso E, Oliaro A, Comoglio PM, et al. Novel Somatic Mutations of the MET Oncogene in Human Carcinoma Metastases Activating Cell Motility and Invasion. Cancer Res. 2002;62

    Google Scholar 

  109. Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, De Stefani A, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19:1547–55. https://doi.org/10.1038/sj.onc.1203455.

    Article  CAS  PubMed  Google Scholar 

  110. Hughes VS, Siemann DW. Failures in preclinical and clinical trials of c-Met inhibitors: Evaluation of pathway activity as a promising selection criterion. Oncotarget. 2019;10:184–97. https://doi.org/10.18632/oncotarget.26546.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kroy DC, Schumacher F, Ramadori P, Hatting M, Bergheim I, Gassler N, et al. Hepatocyte specific deletion of c-Met leads to the development of severe non-alcoholic steatohepatitis in mice. J Hepatol. 2014;61:883–90. https://doi.org/10.1016/j.jhep.2014.05.019.

    Article  CAS  PubMed  Google Scholar 

  112. Vansteenkiste JF, Van De Kerkhove C, Wauters E, Van Mol P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19:659–71. https://doi.org/10.1080/14737140.2019.1643239.

    Article  CAS  PubMed  Google Scholar 

  113. De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, et al. Induction of MET by Ionizing Radiation and Its Role in Radioresistance and Invasive Growth of Cancer. JNCI J Natl Cancer Inst. 2011;103:645–61. https://doi.org/10.1093/jnci/djr093.

    Article  CAS  PubMed  Google Scholar 

  114. Sun S, Wang Z. Head neck squamous cell carcinoma c-Met+ cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 2011;129:2337–48. https://doi.org/10.1002/ijc.25927.

    Article  CAS  PubMed  Google Scholar 

  115. Han P, Li H, Jiang X, Zhai B, Tan G, Zhao D, et al. Dual inhibition of Akt and c-Met as a second-line therapy following acquired resistance to sorafenib in hepatocellular carcinoma cells. Mol Oncol. 2017;11:320–34. https://doi.org/10.1002/1878-0261.12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiang QF, Zhan MX, Li Y, Liang H, Hu C, Huang YM, et al. Activation of MET promotes resistance to sorafenib in hepatocellular carcinoma cells via the AKT/ERK1/2-EGR1 pathway. Artif Cells Nanomedicine Biotechnol. 2019;47:83–9. https://doi.org/10.1080/21691401.2018.1543195.

    Article  CAS  Google Scholar 

  117. Chen W, Wu J, Shi H, Wang Z, Zhang G, Cao Y, et al. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways. Biomed Res Int. 2014;2014:1–10. https://doi.org/10.1155/2014/764981.

    Article  Google Scholar 

  118. Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, et al. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 2019;121:22–33. https://doi.org/10.1038/s41416-019-0482-x.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Firtina Karagonlar Z, Koc D, Iscan E, Erdal E, Atabey N. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 2016;107:407–16. https://doi.org/10.1111/cas.12891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res. 2016;35:159. https://doi.org/10.1186/s13046-016-0430-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xiang Q, Chen W, Ren M, Wang J, Zhang H, Deng DYB, et al. Cabozantinib Suppresses Tumor Growth and Metastasis in Hepatocellular Carcinoma by a Dual Blockade of VEGFR2 and MET. Clin Cancer Res. 2014;20:2959–70. https://doi.org/10.1158/1078-0432.CCR-13-2620.

    Article  CAS  PubMed  Google Scholar 

  122. Fu R, Jiang S, Li J, Chen H, Zhang X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Med Oncol. 2020;37 https://doi.org/10.1007/s12032-020-01350-4.

  123. Liu E, Hjelle B, Bishop JM. Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci. 1988;85:1952–6. https://doi.org/10.1073/pnas.85.6.1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, et al. Axl, a Transforming Gene Isolated From Primary Human Myeloid Leukemia Cells, Encodes a Novel Receptor Tyrosine Kinase. Mol Cell Biol. 1991;11:5016–31. https://doi.org/10.1128/mcb.11.10.5016.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Janssen JWG, Schulz AS, Steenvoorden ACM, Schmidberger M, Strehl S, Ambros PF, et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991;6:2113–20.

    CAS  PubMed  Google Scholar 

  126. Rescigno J, Mansukhani A, Basilico C. A putative receptor tyrosine kinase with unique structural topology. Oncogene. 1991;6:1909–13.

    CAS  PubMed  Google Scholar 

  127. Brown M, Black JRM, Sharma R, Stebbing J, Pinato DJ. Gene of the month: Axl. J Clin Pathol. 2016;69:391–7. https://doi.org/10.1136/jclinpath-2016-203629.

    Article  CAS  PubMed  Google Scholar 

  128. Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Göhring W, Ullrich A, et al. Structural basis for Gas6-Axl signalling. EMBO J. 2006;25:80–7. https://doi.org/10.1038/sj.emboj.7600912.

    Article  CAS  PubMed  Google Scholar 

  129. Lee C-H, Chun T. Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function. Mol Cell. 2019;42:1–7. https://doi.org/10.14348/molcells.2018.0419.

    Article  CAS  Google Scholar 

  130. Laurance S, Lemarié CA, Blostein MD. Growth Arrest-Specific Gene 6 (gas6) and Vascular Hemostasis. Adv Nutr. 2012;3:196–203. https://doi.org/10.3945/an.111.001826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, et al. Identification of the Product of Growth Arrest-specific Gene 6 as a Common Ligand for Axl, Sky, and Mer Receptor Tyrosine Kinases. J Biol Chem. 1996;271:30022–7. https://doi.org/10.1074/jbc.271.47.30022.

    Article  CAS  PubMed  Google Scholar 

  132. Tjwa M, Bellido-Martin L, Lin Y, Lutgens E, Plaisance S, Bono F, et al. Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood. 2008;111:4096–105. https://doi.org/10.1182/blood-2007-05-089565.

    Article  CAS  PubMed  Google Scholar 

  133. Lafdil F, Chobert MN, Couchie D, Brouillet A, Zafrani ES, Mavier P, et al. Induction of Gas6 protein in CCl 4 -induced rat liver injury and anti-apoptotic effect on hepatic stellate cells. Hepatology. 2006;44:228–39. https://doi.org/10.1002/hep.21237.

    Article  CAS  PubMed  Google Scholar 

  134. Couchie D, Lafdil F, Martin-Garcia N, Laperche Y, Zafrani ES, Mavier P. Expression and role of Gas6 protein and of its receptor Axl in hepatic regeneration from oval cells in the rat. Gastroenterology. 2005;129:1633–42. https://doi.org/10.1053/j.gastro.2005.08.004.

    Article  CAS  PubMed  Google Scholar 

  135. Meyer AS, Zweemer AJM, Lauffenburger DA. The AXL Receptor Is a Sensor of Ligand Spatial Heterogeneity. Cell Syst. 2015;1:25–36. https://doi.org/10.1016/j.cels.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med. 2010;207:1807–17. https://doi.org/10.1084/jem.20101157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer. 2019;18:94. https://doi.org/10.1186/s12943-019-1022-2.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lauter M, Weber A, Torka R. Targeting of the AXL receptor tyrosine kinase by small molecule inhibitor leads to AXL cell surface accumulation by impairing the ubiquitin-dependent receptor degradation. Cell Commun Signal. 2019;17:59. https://doi.org/10.1186/s12964-019-0377-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Scaltriti M, Elkabets M, Baselga J. Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy. Clin Cancer Res. 2016;22:1313–7. https://doi.org/10.1158/1078-0432.CCR-15-1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer (Review). Oncol Lett. 2017; https://doi.org/10.3892/ol.2017.7694.

  141. Konishi A, Aizawa T, Mohan A, Korshunov VA, Berk BC. Hydrogen peroxide activates the Gas6-Axl pathway in vascular smooth muscle cells. J Biol Chem. 2004;279:28766–70. https://doi.org/10.1074/jbc.M401977200.

    Article  CAS  PubMed  Google Scholar 

  142. Huang JS, Cho CY, Hong CC, Yan M De, Hsieh MC, Lay JD, et al. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism. vol. 65. Elsevier; 2013. https://doi.org/10.1016/j.freeradbiomed.2013.09.011.

  143. Park IK, Trotta R, Yu J, Caligiuri MA. Axl/Gas6 pathway positively regulates FLT3 activation in human natural killer cell development. Eur J Immunol. 2013;43:2750–5. https://doi.org/10.1002/eji.201243116.

    Article  CAS  PubMed  Google Scholar 

  144. Meyer AS, Miller MA, Gertler FB, Lauffenburger DA. The Receptor AXL Diversifies EGFR Signaling and Limits the Response to EGFR-Targeted Inhibitors in Triple-Negative Breast Cancer Cells. Sci Signal. 2013;6:ra66–ra66. https://doi.org/10.1126/scisignal.2004155.

  145. Pierce A, Bliesner B, Xu M, Nielsen-Preiss S, Lemke G, Tobet S, et al. Axl and Tyro3 Modulate Female Reproduction by Influencing Gonadotropin-Releasing Hormone Neuron Survival and Migration. Mol Endocrinol. 2008;22:2481–95. https://doi.org/10.1210/me.2008-0169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gusenbauer S, Vlaicu P, Ullrich A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene. 2013;32:3846–56. https://doi.org/10.1038/onc.2012.396.

    Article  CAS  PubMed  Google Scholar 

  147. Goyette M-A, Duhamel S, Aubert L, Pelletier A, Savage P, Thibault M-P, et al. The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Rep. 2018;23:1476–90. https://doi.org/10.1016/j.celrep.2018.04.019.

    Article  CAS  PubMed  Google Scholar 

  148. Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of Superoxide Dismutase and Nitric Oxide Synthase Mediates the Apoptosis-Suppressive Effects of Shear Stress on Endothelial Cells. Arterioscler Thromb Vasc Biol. 1999;19:656–64. https://doi.org/10.1161/01.ATV.19.3.656.

    Article  CAS  PubMed  Google Scholar 

  149. Axelrod H, Pienta KJ, Pienta K. Axl as a mediator of cellular growth and survival The TAM receptor tyrosine kinase family mediates the function of protein S and Gas6. Oncotarget. 2014;5

    Google Scholar 

  150. Vajkoczy P, Knyazev P, Kunkel A, Capelle H-H, Behrndt S, von Tengg-Kobligk H, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci. 2006;103:5799–804. https://doi.org/10.1073/pnas.0510923103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hector A, Montgomery EA, Karikari C, Canto MI, Dunbar KB, Wang JS, et al. The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther. 2010;10:1009–18. https://doi.org/10.4161/cbt.10.10.13248.

    Article  CAS  PubMed  Google Scholar 

  152. Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy G, et al. Activation of TYRO3/AXL Tyrosine Kinase Receptors in Thyroid Cancer. Cancer Res. 2011;71:1792–804. https://doi.org/10.1158/0008-5472.CAN-10-2186.

    Article  CAS  PubMed  Google Scholar 

  153. Brand TM, Iida M, Stein AP, Corrigan KL, Braverman CM, Coan JP, et al. Correction: AXL Is a Logical Molecular Target in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2018;24:6099. https://doi.org/10.1158/1078-0432.CCR-18-3194.

    Article  PubMed  Google Scholar 

  154. Paccez JD, Vasques GJ, Correa RG, Vasconcellos JF, Duncan K, Gu X, et al. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene. 2013;32:689–98. https://doi.org/10.1038/onc.2012.89.

    Article  CAS  PubMed  Google Scholar 

  155. Chen P, Li Q, Yang Z. Axl and prostasin are biomarkers for prognosis of ovarian adenocarcinoma. Ann Diagn Pathol. 2013;17:425–9. https://doi.org/10.1016/j.anndiagpath.2013.01.005.

    Article  PubMed  Google Scholar 

  156. Wu C-W, Li AFY, Chi C-W, Lai C-H, Huang CL, Lo S-S, et al. Clinical significance of AXL kinase family in gastric cancer. Anticancer Res. 2002;22:1071–8.

    CAS  PubMed  Google Scholar 

  157. Dunne PD, McArt DG, Blayney JK, Kalimutho M, Greer S, Wang T, et al. AXL Is a Key Regulator of Inherent and Chemotherapy-Induced Invasion and Predicts a Poor Clinical Outcome in Early-Stage Colon Cancer. Clin Cancer Res. 2014;20:164–75. https://doi.org/10.1158/1078-0432.CCR-13-1354.

    Article  CAS  PubMed  Google Scholar 

  158. Berclaz G, Altermatt HJ, Rohrbach V, Kieffer I, Dreher E, Andres A-C. Estrogen dependent expression of the receptor tyrosine kinase axl in normal and malignant human breast. Ann Oncol. 2001;12:819–24. https://doi.org/10.1023/A:1011126330233.

    Article  CAS  PubMed  Google Scholar 

  159. Shinh Y-S, Lai C-Y, Kao Y-R, Shiah S-G, Chu Y-W, Lee H-S, et al. Expression of Axl in Lung Adenocarcinoma and Correlation with Tumor Progression. Neoplasia. 2005;7:1058–64. https://doi.org/10.1593/neo.05640.

    Article  CAS  Google Scholar 

  160. Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer. 2001;37:2264–74. https://doi.org/10.1016/S0959-8049(01)00271-4.

    Article  CAS  PubMed  Google Scholar 

  161. Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, et al. Axl and Growth Arrest Specific Gene 6 Are Frequently Overexpressed in Human Gliomas and Predict Poor Prognosis in Patients with Glioblastoma Multiforme. Clin Cancer Res. 2008;14:130–8. https://doi.org/10.1158/1078-0432.CCR-07-0862.

    Article  CAS  PubMed  Google Scholar 

  162. Pinato DJ, Mauri FA, Lloyd T, Vaira V, Casadio C, Boldorini RL, et al. The expression of Axl receptor tyrosine kinase influences the tumour phenotype and clinical outcome of patients with malignant pleural mesothelioma. Br J Cancer. 2013;108:621–8. https://doi.org/10.1038/bjc.2013.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ghosh AK, Secreto C, Boysen J, Sassoon T, Shanafelt TD, Mukhopadhyay D, et al. The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood. 2011;117:1928–37. https://doi.org/10.1182/blood-2010-09-305649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hong C-C, Lay J-D, Huang J-S, Cheng A-L, Tang J-L, Lin M-T, et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 2008;268:314–24. https://doi.org/10.1016/j.canlet.2008.04.017.

    Article  CAS  PubMed  Google Scholar 

  165. van Ginkel PR, Gee RL, Shearer RL, Subramanian L, Walker TM, Albert DM, et al. Expression of the Receptor Tyrosine Kinase Axl Promotes Ocular Melanoma Cell Survival. Cancer Res. 2004;64:128–34. https://doi.org/10.1158/0008-5472.CAN-03-0245.

    Article  PubMed  Google Scholar 

  166. Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH, Lui WY, et al. Parallel hybridization analysis of multiple protein kinase genes: Identification of gene expression patterns characteristic of human hepatocellular carcinoma. Genomics. 1998;50:331–40. https://doi.org/10.1006/geno.1998.5338.

    Article  CAS  PubMed  Google Scholar 

  167. Xu J, Jia L, Ma H, Li Y, Ma Z, Zhao Y. Axl gene knockdown inhibits the metastasis properties of hepatocellular carcinoma via PI3K/Akt-PAK1 signal pathway. Tumor Biol. 2014;35:3809–17. https://doi.org/10.1007/s13277-013-1521-5.

    Article  CAS  Google Scholar 

  168. Liu J, Wang K, Yan Z, Xia Y, Li J, Shi L, et al. Axl expression stratifies patients with poor prognosis after hepatectomy for hepatocellular carcinoma. PLoS One. 2016;11:1–13. https://doi.org/10.1371/journal.pone.0154767.

    Article  CAS  Google Scholar 

  169. Pinato DJ, Brown MW, Trousil S, Aboagye EO, Beaumont J, Zhang H, et al. Integrated analysis of multiple receptor tyrosine kinases identifies Axl as a therapeutic target and mediator of resistance to sorafenib in hepatocellular carcinoma. Br J Cancer. 2019;120:512–21. https://doi.org/10.1038/s41416-018-0373-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee HJ, Jeng YM, Chen YL, Chung L, Yuan RH. Gas6/Axl pathway promotes tumor invasion through the transcriptional activation of slug in hepatocellular carcinoma. Carcinogenesis. 2014;35:769–75. https://doi.org/10.1093/carcin/bgt372.

    Article  CAS  PubMed  Google Scholar 

  171. Reichl P, Dengler M, van Zijl F, Huber H, Führlinger G, Reichel C, et al. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology. 2015;61:930–41. https://doi.org/10.1002/hep.27492.

    Article  CAS  PubMed  Google Scholar 

  172. Yu F-X, Zhao B, Guan K-L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell. 2015;163:811–28. https://doi.org/10.1016/j.cell.2015.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol. 2019;61:64–71. https://doi.org/10.1016/j.ceb.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  174. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, et al. YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells. Curr Biol. 2007;17:2054–60. https://doi.org/10.1016/j.cub.2007.10.039.

    Article  CAS  PubMed  Google Scholar 

  175. Xu MZ, Yao T-J, Lee NPY, Ng IOL, Chan Y-T, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115:4576–85. https://doi.org/10.1002/cncr.24495.

    Article  CAS  PubMed  Google Scholar 

  176. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 2011;30:1229–40. https://doi.org/10.1038/onc.2010.504.

    Article  CAS  PubMed  Google Scholar 

  177. Wong K-F, Liu AM, Hong W, Xu Z, Luk JM. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget. 2016;7:77683–95. https://doi.org/10.18632/oncotarget.12760.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wang W, Jia W-D, Hu B, Pan Y-Y. RAB10 overexpression promotes tumor growth and indicates poor prognosis of hepatocellular carcinoma. Oncotarget. 2017;8:26434–47. https://doi.org/10.18632/oncotarget.15507.

    Article  PubMed  PubMed Central  Google Scholar 

  179. He H, Dai F, Yu L, She X, Zhao Y, Jiang J, et al. Identification and Characterization of Nine Novel Human Small GTPases Showing Variable Expressions in Liver Cancer Tissues. Gene Expr. 2002;10:231–42. https://doi.org/10.3727/000000002783992406.

    Article  CAS  PubMed  Google Scholar 

  180. Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González L, Granados-López A, López-Hernández Y, et al. 5p and 3p Strands of miR-34 Family Members Have Differential Effects in Cell Proliferation, Migration, and Invasion in Cervical Cancer Cells. Int J Mol Sci. 2019;20:545. https://doi.org/10.3390/ijms20030545.

    Article  CAS  PubMed Central  Google Scholar 

  181. X-Y LI, J-Y WEN, C-C JIA, T-T WANG, LI X, DONG M, et al. MicroRNA-34a-5p enhances sensitivity to chemotherapy by targeting AXL in hepatocellular carcinoma MHCC-97L cells. Oncol Lett. 2015;10:2691–8. https://doi.org/10.3892/ol.2015.3654.

    Article  CAS  Google Scholar 

  182. Cheng J, Zhou L, Xie QF, Xie HY, Wei XY, Gao F, et al. The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells. Proteomics. 2010;10:1557–72. https://doi.org/10.1002/pmic.200900646.

    Article  CAS  PubMed  Google Scholar 

  183. Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127 , and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 2009;48:479–487. https://doi.org/10.1002/mc.20484.

  184. Golkowski M, Lau H-T, Chan M, Kenerson H, Vidadala VN, Shoemaker A, et al. Pharmacoproteomics Identifies Kinase Pathways that Drive the Epithelial-Mesenchymal Transition and Drug Resistance in Hepatocellular Carcinoma. Cell Syst. 2020;11:196–207.e7. https://doi.org/10.1016/j.cels.2020.07.006.

  185. Matsuzaki K, Seki T, Okazaki K. TGF-β signal shifting between tumor suppression and fibro-carcinogenesis in human chronic liver diseases. J Gastroenterol. 2014;49:971–81. https://doi.org/10.1007/s00535-013-0910-2.

    Article  CAS  PubMed  Google Scholar 

  186. Katz LH, Likhter M, Jogunoori W, Belkin M, Ohshiro K, Mishra L. TGF-β signaling in liver and gastrointestinal cancers. Cancer Lett. 2016;379:166–72. https://doi.org/10.1016/j.canlet.2016.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Calvisi DF. When good transforming growth factor-β turns bad in hepatocellular carcinoma: Axl takes the stage. Hepatology. 2015;61:759–61. https://doi.org/10.1002/hep.27624.

    Article  CAS  PubMed  Google Scholar 

  188. Wang Y, Deng B, Tang W, Liu T, Shen X. TGF-β1 secreted by hepatocellular carcinoma induces the expression of the Foxp3 gene and suppresses antitumor immunity in the tumor microenvironment. Dig Dis Sci. 2013;58:1644–52. https://doi.org/10.1007/s10620-012-2550-4.

    Article  CAS  PubMed  Google Scholar 

  189. Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, et al. Transforming Growth Factor-β and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma. Hepatology. 2019;69:222–36. https://doi.org/10.1002/hep.30166.

    Article  CAS  PubMed  Google Scholar 

  190. Morizono K, Chen ISY. Role of Phosphatidylserine Receptors in Enveloped Virus Infection. J Virol. 2014;88:4275–90. https://doi.org/10.1128/JVI.03287-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53. https://doi.org/10.1016/j.canlet.2008.09.035.

    Article  CAS  PubMed  Google Scholar 

  192. Miller MA, Sullivan RJ, Lauffenburger DA. Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res. 2017;23:623–9. https://doi.org/10.1158/1078-0432.CCR-16-0869.

    Article  CAS  PubMed  Google Scholar 

  193. Wang T, Zhang K-H. New Blood Biomarkers for the Diagnosis of AFP-Negative Hepatocellular Carcinoma. Front Oncol. 2020;10 https://doi.org/10.3389/fonc.2020.01316.

  194. Song X, Wu A, Ding Z, Liang S, Zhang C. Soluble Axl Is a Novel Diagnostic Biomarker of Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection. Cancer Res Treat. 2020;52:789–97. https://doi.org/10.4143/crt.2019.749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dengler M, Staufer K, Huber H, Stauber R, Bantel H, Weiss KH, et al. Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: Results from a large scale multicenter analysis. Oncotarget. 2017;8:46234–48. https://doi.org/10.18632/oncotarget.17598.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Reichl P, Fang M, Starlinger P, Staufer K, Nenutil R, Muller P, et al. Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int J Cancer. 2015;137:385–94. https://doi.org/10.1002/ijc.29394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lay J-D, Hong C-C, Huang J-S, Yang Y-Y, Pao C-Y, Liu C-H, et al. Sulfasalazine Suppresses Drug Resistance and Invasiveness of Lung Adenocarcinoma Cells Expressing AXL. Cancer Res. 2007;67:3878–87. https://doi.org/10.1158/0008-5472.CAN-06-3191.

    Article  CAS  PubMed  Google Scholar 

  198. Lin JZ, Wang ZJ, De W, Zheng M, Zhang XW, Wu HF, et al. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget. 2017;8:41064–77. https://doi.org/10.18632/oncotarget.17026.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL. Cancer Res. 2009;69:6871–8. https://doi.org/10.1158/0008-5472.CAN-08-4490.

    Article  CAS  PubMed  Google Scholar 

  200. Dufies M, Jacquel A, Belhacene N, Robert G, Cluzeau T, Luciano F, et al. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget. 2011;2:874–85. https://doi.org/10.18632/oncotarget.360.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26:3909–19. https://doi.org/10.1038/sj.onc.1210173.

    Article  CAS  PubMed  Google Scholar 

  202. Gioia R, Leroy C, Drullion C, Lagarde V, Etienne G, Dulucq S, et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood. 2011;118:2211–21. https://doi.org/10.1182/blood-2010-10-313692.

    Article  CAS  PubMed  Google Scholar 

  203. Zhou L, Liu X, Sun M, Zhang X, German P, Bai S, et al. HHS Public Access. 2016;35:2687–97. https://doi.org/10.1038/onc.2015.343.Targeting.

    Article  CAS  Google Scholar 

  204. Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019;10:2–15. https://doi.org/10.1038/s41467-018-08074-0.

    Article  CAS  Google Scholar 

  205. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852–60. https://doi.org/10.1038/ng.2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ma Y, Zhou G, Li M, Hu D, Zhang L, Liu P, et al. Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int. 2018;118:233–41. https://doi.org/10.1016/j.neuint.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  207. Zheng SZ, Sun P, Wang JP, Liu Y, Gong W, Liu J. MiR-34a overexpression enhances the inhibitory effect of doxorubicin on HepG2 cells. World J Gastroenterol. 2019;25:2752–62. https://doi.org/10.3748/wjg.v25.i22.2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wu X, Liu X, Koul S, Lee CY, Zhang Z, Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5:9546–63. https://doi.org/10.18632/oncotarget.2542.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18:153. https://doi.org/10.1186/s12943-019-1090-3.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 2010;29:5254–64. https://doi.org/10.1038/onc.2010.268.

    Article  CAS  PubMed  Google Scholar 

  211. Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, et al. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis. Clin Cancer Res. 2017;23:2806–16. https://doi.org/10.1158/1078-0432.CCR-16-1316.

    Article  CAS  PubMed  Google Scholar 

  212. Quirico L, Orso F, Esposito CL, Bertone S, Coppo R, Conti L, et al. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int J Biol Sci. 2020;16:1238–51. https://doi.org/10.7150/ijbs.39768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kanlikilicer P, Ozpolat B, Aslan B, Bayraktar R, Gurbuz N, Rodriguez-Aguayo C, et al. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. Mol Ther - Nucleic Acids. 2017;9:251–62. https://doi.org/10.1016/j.omtn.2017.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cerchia L, Esposito CL, Camorani S, Rienzo A, Stasio L, Insabato L, et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther. 2012;20:2291–303. https://doi.org/10.1038/mt.2012.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kariolis MS, Miao YR, Jones DS, Kapur S, Mathews II, Giaccia AJ, et al. An engineered Axl “decoy receptor” effectively silences the Gas6-Axl signaling axis. Nat Chem Biol. 2014;10:977–83. https://doi.org/10.1038/nchembio.1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a Selective Small Molecule Inhibitor of Axl Kinase, Blocks Tumor Spread and Prolongs Survival in Models of Metastatic Breast Cancer. Cancer Res. 2010;70:1544–54. https://doi.org/10.1158/0008-5472.CAN-09-2997.

    Article  CAS  PubMed  Google Scholar 

  217. Zhang Y-X, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L, et al. AXL Is a Potential Target for Therapeutic Intervention in Breast Cancer Progression. Cancer Res. 2008;68:1905–15. https://doi.org/10.1158/0008-5472.CAN-07-2661.

    Article  CAS  PubMed  Google Scholar 

  218. An H, He L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol. 2016;228:R97–106. https://doi.org/10.1530/JOE-15-0447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Saraei P, Asadi I, Kakar MA, Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res. 2019;11:3295–313. https://doi.org/10.2147/CMAR.S200059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. MIYOSHI H, KATO K, IWAMA H, MAEDA E, SAKAMOTO T, FUJITA K, et al. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2014;45:322–32. https://doi.org/10.3892/ijo.2014.2419.

    Article  CAS  PubMed  Google Scholar 

  221. FUJIMORI T, KATO K, FUJIHARA S, IWAMA H, YAMASHITA T, KOBAYASHI K, et al. Antitumor effect of metformin on cholangiocarcinoma: In vitro and in vivo studies. Oncol Rep. 2015;34:2987–96. https://doi.org/10.3892/or.2015.4284.

    Article  CAS  PubMed  Google Scholar 

  222. Bansal N, Mishra PJ, Stein M, DiPaola RS, Bertino JR. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells. Oncotarget. 2015;6:15321–31. https://doi.org/10.18632/oncotarget.4148.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Personeni N, Rimassa L, Pressiani T, Smiroldo V, Santoro A. Cabozantinib for the treatment of hepatocellular carcinoma. Expert Rev Anticancer Ther. 2019;19:847–55. https://doi.org/10.1080/14737140.2019.1674141.

    Article  CAS  PubMed  Google Scholar 

  224. Yates LR, Seoane J, Le Tourneau C, Siu LL, Marais R, Michiels S, et al. The European Society for Medical Oncology (ESMO) Precision Medicine Glossary. Ann Oncol. 2018;29:30–5. https://doi.org/10.1093/annonc/mdx707.

    Article  CAS  PubMed  Google Scholar 

  225. Gönen M, Weir BA, Cowley GS, Vazquez F, Guan Y, Jaiswal A, et al. A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. Cell Syst. 2017;5:485–497.e3. https://doi.org/10.1016/j.cels.2017.09.004.

  226. Ben-Hamo R, Jacob Berger A, Gavert N, Miller M, Pines G, Oren R, et al. Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat Commun. 2020;11:3296. https://doi.org/10.1038/s41467-020-17090-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chan P-C, Chen S-Y, Chen C-H, Chen H-C. Crosstalk between hepatocyte growth factor and integrin signaling pathways. J Biomed Sci. 2006;13:215–23. https://doi.org/10.1007/s11373-005-9061-7.

    Article  CAS  PubMed  Google Scholar 

  228. Li W, Xiong X, Abdalla A, Alejo S, Zhu L, Lu XF, et al. HGF-induced formation of the MET-AXL-ELMO2-DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion. J Biol Chem. 2018;293:15397–418. https://doi.org/10.1074/jbc.RA118.003063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Yeh CY, Shin SM, Yeh HH, Wu TJ, Shin JW, Chang TY, et al. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer. 2011;11:139. https://doi.org/10.1186/1471-2407-11-139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rankin EB, Fuh KC, Castellini L, Viswanathan K, Finger EC, Diep AN, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci. 2014;111:13373–8. https://doi.org/10.1073/pnas.1404848111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Choi YJ, Kim JH, Rho JK, Kim JS, Choi CM, Kim WS, et al. AXL and MET receptor tyrosine kinases are essential for lung cancer metastasis. Oncol Rep. 2017;37:2201–8. https://doi.org/10.3892/or.2017.5482.

    Article  CAS  PubMed  Google Scholar 

  232. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, et al. 基因的改晋NIH Public Access. Cancer Res. 2017;8:1–9. https://doi.org/10.1038/jid.2014.371.

  233. Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther. 2020;13:2855–72. https://doi.org/10.2147/OTT.S234549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ren F-H, Yang H, He R, Lu J, Lin X, Liang H-W, et al. Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer. 2018;18:12. https://doi.org/10.1186/s12885-017-3941-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lai SC, Su YT, Chi CC, Kuo YC, Lee KF, Wu YC, et al. DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. J Exp Clin Cancer Res. 2019;38:1–18. https://doi.org/10.1186/s13046-019-1442-2.

    Article  CAS  Google Scholar 

  236. Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology. 2013;57:1847–57. https://doi.org/10.1002/hep.26224.

    Article  CAS  PubMed  Google Scholar 

  237. Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med. 2018;50:1–9. https://doi.org/10.1038/s12276-018-0159-1.

    Article  CAS  PubMed  Google Scholar 

  238. Rho JK, Choi YJ, Kim SY, Kim TW, Choi EK, Yoon SJ, et al. MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation. Cancer Res. 2014;74:253–62. https://doi.org/10.1158/0008-5472.CAN-13-1103.

    Article  CAS  PubMed  Google Scholar 

  239. Clemenson C, Chargari C, Liu W, Mondini M, Ferte C, Burbridge MF, et al. The MET/AXL/FGFR inhibitor S49076 impairs Aurora B activity and improves the antitumor efficacy of radiotherapy. Mol Cancer Ther. 2017;16:2107–19. https://doi.org/10.1158/1535-7163.MCT-17-0112.

    Article  CAS  PubMed  Google Scholar 

  240. Rodon J, Postel-Vinay S, Hollebecque A, Nuciforo P, Azaro A, Cattan V, et al. First-in-human phase I study of oral S49076, a unique MET/AXL/FGFR inhibitor, in advanced solid tumours. Eur J Cancer. 2017;81:142–50. https://doi.org/10.1016/j.ejca.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  241. Viteri S, Chang G-C, Chiari R, Cho BC, Ciardiello F, Curigliano G, et al. Combination of the S49076 with gefitinib in NSCLC patients progressing on EGFR-TKI and harboring MET/AXL dysregulation. Ann Oncol. 2018;29:viii525. https://doi.org/10.1093/annonc/mdy292.074.

  242. Mahadevan D, Theiss N, Morales C, Stejskal AE, Cooke LS, Zhu M, et al. Novel receptor tyrosine kinase targeted combination therapies for imatinib-resistant gastrointestinal stromal tumors (GIST). Oncotarget. 2015;6:1954–66. https://doi.org/10.18632/oncotarget.3021.

    Article  PubMed  Google Scholar 

  243. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35:2687–97. https://doi.org/10.1038/onc.2015.343.

    Article  CAS  PubMed  Google Scholar 

  244. Neal JW, Dahlberg SE, Wakelee HA, Aisner SC, Bowden M, Huang Y, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17:1661–71. https://doi.org/10.1016/S1470-2045(16)30561-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Desai A, Small EJ. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors. Futur Oncol. 2019;15:2337–48. https://doi.org/10.2217/fon-2019-0021.

    Article  CAS  Google Scholar 

  246. Rathi N, Maughan BL, Agarwal N, Swami U. Mini-Review: Cabozantinib in the Treatment of Advanced Renal Cell Carcinoma and Hepatocellular Carcinoma. Cancer Manag Res. 2020;12:3741–9. https://doi.org/10.2147/CMAR.S202973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zaccagnino A, Vynnytska-Myronovska B, Stöckle M, Junker K. Cross-resistance to Cabozantinib in renal cell carcinoma second-line treatment? Eur Urol Suppl. 2019;18:e3105. https://doi.org/10.1016/s1569-9056(19)33350-0.

    Article  Google Scholar 

  248. Schroeder GM, An Y, Cai ZW, Chen XT, Clark C, Cornelius LAM, et al. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4- ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the met kinase superfamily. J Med Chem. 2009;52:1251–4. https://doi.org/10.1021/jm801586s.

    Article  CAS  PubMed  Google Scholar 

  249. Dai Y, Siemann DW. BMS-777607, a small-molecule Met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol Cancer Ther. 2010;9:1554–61. https://doi.org/10.1158/1535-7163.MCT-10-0359.

    Article  CAS  PubMed  Google Scholar 

  250. Dai Y, Bae K, Pampo C, Siemann DW. Impact of the small molecule Met inhibitor BMS-777607 on the metastatic process in a rodent tumor model with constitutive c-Met activation. Clin Exp Metastasis. 2012;29:253–61. https://doi.org/10.1007/s10585-011-9447-z.

    Article  CAS  PubMed  Google Scholar 

  251. Onken J, Torka R, Korsing S, Radke J, Krementeskaia I, Nieminen M, et al. Inhibiting receptor tyrosine kinase AXL with small molecule inhibitor BMS-777607 reduces glioblastoma growth, migration, and invasion in vitro and in vivo. Oncotarget. 2016;7:9876–89. https://doi.org/10.18632/oncotarget.7130.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Hu X, Zheng X, Yang S, Wang L, Hao X, Cui X, et al. First-in-human phase i study of BPI-9016M, a dual MET/Axl inhibitor, in patients with non-small cell lung cancer. J Hematol Oncol. 2020;13:1–10. https://doi.org/10.1186/s13045-019-0834-2.

    Article  CAS  Google Scholar 

  253. Yan SB, Peek VL, Ajamie R, Buchanan SG, Graff JR, Heidler SA, et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Investig New Drugs. 2013;31:833–44. https://doi.org/10.1007/s10637-012-9912-9.

    Article  CAS  Google Scholar 

  254. Wu W, Bi C, Credille KM, Manro JR, Peek VL, Donoho GP, et al. Inhibition of Tumor Growth and Metastasis in Non-Small Cell Lung Cancer by LY2801653, an Inhibitor of Several Oncokinases, Including MET. Clin Cancer Res. 2013;19:5699–710. https://doi.org/10.1158/1078-0432.CCR-13-1758.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neşe Atabey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yılmaz, Y., Batur, T., Korhan, P., Öztürk, M., Atabey, N. (2021). Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. In: Carr, B.I. (eds) Liver Cancer in the Middle East. Springer, Cham. https://doi.org/10.1007/978-3-030-78737-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78737-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78736-3

  • Online ISBN: 978-3-030-78737-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics