Skip to main content

Fasting for Cardiovascular Health

  • Chapter
  • First Online:
Prevention and Treatment of Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 996 Accesses

Abstract

While fasting is an ancient practice, research over the last decade has highlighted its potential as a method of obtaining weight loss and other cardiometabolic health benefits. Several different patterns of fasting have emerged, including alternate-day fasting (ADF), 5:2 intermittent fasting (IF), time-restricted eating (TRE), and periodic fasting. Preclinical data in animals are impressive, demonstrating that periods of zero or few calories can result in not just weight loss, but other health benefits. Subsequent data in humans have been steadily accumulating and show beneficial effects in populations at high risk for atherosclerotic cardiovascular disease, including patients with overweight or obesity, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and also patients at a normal weight. One mechanism behind these benefits may be related to a metabolic switch from use of glucose as fuel in the fed state to use of ketones, which influence genes involved in health and longevity and improve cellular response to stress. It is important to evaluate the data as well as the feasibility and safety of each fasting method. Certain fasting patterns may be appropriate to recommend to select patients as lifestyle modification for prevention of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Editors of Encyclopædia Britannica. Fasting. Encyclopædia Britannica; 2020.

    Google Scholar 

  2. de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381:2541–51.

    Article  PubMed  Google Scholar 

  3. Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25:42–52.

    Article  CAS  PubMed  Google Scholar 

  4. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10:63–79.

    Article  CAS  Google Scholar 

  6. Weindruch R, Sohal RS. Caloric intake and aging. N Engl J Med. 1997;337:986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, Hansen BC. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci. 2003;58:212–9.

    Article  PubMed  Google Scholar 

  8. Mattison JA, Lane MA, Roth GS, Ingram DK. Calorie restriction in rhesus monkeys. Exp Gerontol. 2003;38:35–46.

    Article  PubMed  Google Scholar 

  9. Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129–37.

    Article  CAS  PubMed  Google Scholar 

  10. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N. Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev. 1990;55:69–87.

    Article  CAS  PubMed  Google Scholar 

  11. Anson RM, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–72.

    Article  CAS  PubMed  Google Scholar 

  13. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29:592–610.

    Article  CAS  PubMed  Google Scholar 

  15. Raeini-Sarjaz M, Vanstone CA, Papamandjaris AA, Wykes LJ, Jones PJ. Comparison of the effect of dietary fat restriction with that of energy restriction on human lipid metabolism. Am J Clin Nutr. 2001;73:262–7.

    Article  CAS  PubMed  Google Scholar 

  16. Diniz YS, et al. Dietary restriction and fibre supplementation: oxidative stress and metabolic shifting for cardiac health. Can J Physiol Pharmacol. 2003;81:1042–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wan R, Camandola S, Mattson MP. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr. 2003;133:1921–9.

    Article  CAS  PubMed  Google Scholar 

  18. Young JB, Mullen D, Landsberg L. Caloric restriction lowers blood pressure in the spontaneously hypertensive rat. Metabolism. 1978;27:1711–4.

    Article  CAS  PubMed  Google Scholar 

  19. Spaulding CC, Walford RL, Effros RB. Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-α and IL-6 in C3B10RF1 mice. Mech Ageing Dev. 1997;93:87–94.

    Article  CAS  PubMed  Google Scholar 

  20. Muthukumar A, Zaman K, Lawrence R, Barnes JL, Fernandes G. Food restriction and fish oil suppress atherogenic risk factors in lupus-prone (NZB× NZW) F 1 mice. J Clin Immunol. 2003;23:23–33.

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekar B, Nelson JF, Colston JT, Freeman GL. Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2001;280:H2094–102.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M. Cardioprotection by intermittent fasting in rats. Circulation. 2005;112:3115–21.

    Article  PubMed  Google Scholar 

  23. Crandall DL, Feirer RP, Griffith DR, Beitz DC. Relative role of caloric restriction and exercise training upon susceptibility to isoproterenol-induced myocardial infarction in male rats. Am J Clin Nutr. 1981;34:841–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hatori M, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33.

    Google Scholar 

  26. Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20:991–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347:1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Jones DM, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction. Circulation. 2010;121:586–613.

    Article  PubMed  Google Scholar 

  29. Yang Q, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA. 2012;307:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harvie MN, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011;35:714–27.

    Article  CAS  Google Scholar 

  31. Sundfør TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr Metab Cardiovasc Dis. 2018;28:698–706.

    Article  PubMed  Google Scholar 

  32. Quispe R, et al. High-sensitivity C-reactive protein discordance with atherogenic lipid measures and incidence of atherosclerotic cardiovascular disease in primary prevention: the ARIC study. J Am Heart Assoc. 2020;9:e013600.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Horne BD, et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Am J Cardiol. 2008;102:814–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Horne BD, et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. Am J Cardiol. 2012;109:1558–62.

    Article  PubMed  Google Scholar 

  35. Carter S, Clifton PM, Keogh JB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw Open. 2018;1:e180756.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Furmli S, Elmasry R, Ramos M, Fung J. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep. 2018;2018:bcr2017221854.

    Article  PubMed Central  Google Scholar 

  37. Corley BT, et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med. 2018;35:588–94.

    Article  CAS  PubMed  Google Scholar 

  38. Horne BD, Grajower MM, Anderson JL. Limited evidence for the health effects and safety of intermittent fasting among patients with type 2 diabetes. JAMA. 2020. https://doi.org/10.1001/jama.2020.3908.

  39. Grajower MM, Horne BD. Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients. 2019;11:873.

    Article  CAS  PubMed Central  Google Scholar 

  40. Trepanowski JF, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177:930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90:1138–43.

    Article  CAS  PubMed  Google Scholar 

  42. Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62:137–43.

    Article  CAS  PubMed  Google Scholar 

  43. Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–9.

    Article  CAS  PubMed  Google Scholar 

  44. Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013;12:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cai H, et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterol. 2019;19:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stekovic S, et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 2020;31:878–81.

    Article  CAS  PubMed  Google Scholar 

  47. Varady KA, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heilbronn LK, Smith SR, Martin CK, Anton SD, Ravussin E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81:69–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hoddy KK, et al. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr J. 2015;14:44.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meydani SN, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging. 2016;8:1416–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schafer AL. Decline in bone mass during weight loss: a cause for concern? J Bone Miner Res. 2016;31:36–9.

    Article  PubMed  Google Scholar 

  52. Villareal DT, et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J Bone Miner Res. 2016;31:40–51.

    Article  CAS  PubMed  Google Scholar 

  53. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panda S. Circadian physiology of metabolism. Science. 2016;354:1008–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gabel K, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging. 2018;4:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cienfuegos S, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 2020. https://doi.org/10.1016/j.cmet.2020.06.018.

  58. Hutchison AT, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity. 2019;27:724–32.

    Article  CAS  PubMed  Google Scholar 

  59. Lowe DA, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern Med. 2020. https://doi.org/10.1001/jamainternmed.2020.4153.

  60. Wilkinson MJ, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31:92–104.e5.

    Article  CAS  PubMed  Google Scholar 

  61. Sutton EF, et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–1221.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morris CJ, et al. The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity. 2015;23:2053–8.

    Article  PubMed  Google Scholar 

  63. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106:4453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garaulet M, et al. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond). 2013;37:604–11.

    Article  CAS  Google Scholar 

  66. Jakubowicz D, et al. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia. 2015;58:912–9.

    Article  CAS  PubMed  Google Scholar 

  67. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity. 2013;21:2504–12.

    Article  CAS  PubMed  Google Scholar 

  68. Jakubowicz D, Barnea M, Wainstein J, Froy O. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin Sci. 2013;125:423–32.

    Article  CAS  Google Scholar 

  69. Keim NL, Van Loan MD, Horn WF, Barbieri TF, Mayclin PL. Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen. J Nutr. 1997;127:75–82.

    Article  CAS  PubMed  Google Scholar 

  70. Ruiz-Lozano T, et al. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin Nutr. 2016;35:1308–14.

    Article  CAS  PubMed  Google Scholar 

  71. Gabel K, Hoddy KK, Varady KA. Safety of 8-h time restricted feeding in adults with obesity. Appl Physiol Nutr Metab. 2019;44:107–9.

    Article  PubMed  Google Scholar 

  72. Teruya T, Chaleckis R, Takada J, Yanagida M, Kondoh H. Diverse metabolic reactions activated during 58-hr fasting are revealed by non-targeted metabolomic analysis of human blood. Sci Rep. 2019;9:854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wilhelmi de Toledo F, Grundler F, Bergouignan A, Drinda S, Michalsen A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS One. 2019;14:e0209353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li C, et al. Metabolic and psychological response to 7-day fasting in obese patients with and without metabolic syndrome. Forsch Komplementmed. 2013;20:413–20.

    Article  PubMed  Google Scholar 

  75. Li C, et al. Effects of a one-week fasting therapy in patients with type-2 diabetes mellitus and metabolic syndrome – a randomized controlled explorative study. Exp Clin Endocrinol Diabetes. 2017;125:618–24.

    Article  CAS  PubMed  Google Scholar 

  76. Thomson TJ, Runcie J, Miller V. Treatment of obesity by total fasting for up to 249 days. Lancet. 1966;2:992–6.

    Article  CAS  PubMed  Google Scholar 

  77. Runcie J, Hilditch TE. Energy provision, tissue utilization, and weight loss in prolonged starvation. Br Med J. 1974;2:352–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brandhorst S, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22:86–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9:eaai8700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jamshed H, et al. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11:1234.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

Figure 9.1 was created with BioRender.com.

Figure 9.2 was created by Christina Pecora, MSMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Wilkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Epstein, E.S., Maysent, K., Wilkinson, M.J. (2021). Fasting for Cardiovascular Health. In: Wilkinson, M.J., Garshick, M.S., Taub, P.R. (eds) Prevention and Treatment of Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-78177-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78177-4_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-78176-7

  • Online ISBN: 978-3-030-78177-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics