Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 340))

  • 808 Accesses

Abstract

By using the notion of a rigid R-matrix in a monoidal category and the Reshetikhin–Turaev functor on the category of tangles, we review the definition of the associated invariant of long knots. In the framework of the monoidal categories of relations and spans over sets, by introducing racks associated with pointed groups, we illustrate the construction and the importance of consideration of long knots. Else, by using the restricted dual of algebras and Drinfeld’s quantum double construction, we show that to any Hopf algebra H with invertible antipode, one can associate a universal long knot invariant Z H(K) taking its values in the convolution algebra ((D(H))o) of the restricted dual Hopf algebra (D(H))o of the quantum double D(H) of H. This extends the known constructions of universal invariants previously considered mostly either in the case of finite-dimensional Hopf algebras or by using some topological completions.

Dedicated to Nikolai Reshetikhin on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dror Bar-Natan and Stavros Garoufalidis. On the Melvin-Morton-Rozansky conjecture. Invent. Math., 125(1):103–133, 1996.

    Article  MathSciNet  Google Scholar 

  2. Alain Bruguières and Alexis Virelizier. Hopf diagrams and quantum invariants. Algebr. Geom. Topol., 5:1677–1710 (electronic), 2005.

    Google Scholar 

  3. Sorin Dăscălescu, Constantin Năstăsescu, and Şerban Raianu. Hopf algebras, volume 235 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 2001. An introduction.

    Google Scholar 

  4. Roger Fenn and Colin Rourke. Racks and links in codimension two. J. Knot Theory Ramifications, 1(4):343–406, 1992.

    Article  MathSciNet  Google Scholar 

  5. Stavros Garoufalidis and Thang T. Q. Lê. Asymptotics of the colored Jones function of a knot. Geom. Topol., 15(4):2135–2180, 2011.

    Google Scholar 

  6. Kazuo Habiro. Bottom tangles and universal invariants. Algebr. Geom. Topol., 6:1113–1214, 2006.

    Article  MathSciNet  Google Scholar 

  7. David Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra, 23(1):37–65, 1982.

    Article  MathSciNet  Google Scholar 

  8. R. M. Kashaev. R-matrix knot invariants and triangulations. In Interactions between hyperbolic geometry, quantum topology and number theory, volume 541 of Contemp. Math., pages 69–81. Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  9. R. J. Lawrence. A universal link invariant using quantum groups. In Differential geometric methods in theoretical physics (Chester, 1988), pages 55–63. World Sci. Publ., Teaneck, NJ, 1989.

    Google Scholar 

  10. H. C. Lee. Tangles, links and twisted quantum groups. In Physics, geometry, and topology (Banff, AB, 1989), volume 238 of NATO Adv. Sci. Inst. Ser. B Phys., pages 623–655. Plenum, New York, 1990.

    Google Scholar 

  11. Volodimir Lyubashenko. Tangles and Hopf algebras in braided categories. J. Pure Appl. Algebra, 98(3):245–278, 1995.

    Article  MathSciNet  Google Scholar 

  12. Shahn Majid. Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  13. S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88, 160, 1982.

    Google Scholar 

  14. Tomotada Ohtsuki. Colored ribbon Hopf algebras and universal invariants of framed links. J. Knot Theory Ramifications, 2(2):211–232, 1993.

    Article  MathSciNet  Google Scholar 

  15. N. Yu. Reshetikhin. Quasitriangular Hopf algebras and invariants of links. Algebra i Analiz, 1(2):169–188, 1989.

    MathSciNet  Google Scholar 

  16. N. Yu. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys., 127(1):1–26, 1990.

    Article  MathSciNet  Google Scholar 

  17. Mituhisa Takasaki. Abstraction of symmetric transformations. Tôhoku Math. J., 49:145–207, 1943.

    MathSciNet  Google Scholar 

  18. Alexis Virelizier. Kirby elements and quantum invariants. Proc. London Math. Soc. (3), 93(2):474–514, 2006.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Bruce Bartlett, Léo Bénard, Joan Porti, Louis-Hadrien Robert, Arkady Vaintrob, Roland van der Veen, and Alexis Virelizier for valuable discussions. This work is supported in part by the Swiss National Science Foundation, the subsidy no 200020_192081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinat Kashaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashaev, R. (2021). Invariants of Long Knots. In: Alekseev, A., Frenkel, E., Rosso, M., Webster, B., Yakimov, M. (eds) Representation Theory, Mathematical Physics, and Integrable Systems. Progress in Mathematics, vol 340. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-78148-4_15

Download citation

Publish with us

Policies and ethics