Skip to main content

Introduction

  • Chapter
  • First Online:
Particles in the Dark Universe
  • 1162 Accesses

Abstract

The twentieth century studies evidenced the existence of a new form of matter which have inspired interest in modern physics scenario. It has been named “Dark Matter” (DM), exotic name but with a clear meaning: a component of matter that does not emit luminous radiation. Beginning from a study presented by Zwicky in 1933 [4] who analyzed the motion of individual galaxies in the Coma cluster, subsequently other observations have indicated the presence of dark matter from the kinematics of gravitationally bound systems and rotating spiral galaxies, the effects of gravitational lensing of background objects, various evidences among which the observation of the Bullet Cluster, until recent results from the PLANCK satellite. Furthermore, the dark matter appears to have an important role in the formation of the structures, in the evolution of galaxies and also has effects on non-uniformity observed cosmological microwave of background radiation. Before going into detailed analyses of each step structuring the dark matter presence and interaction in our Universe, we will first introduce in this chapter the most important evidences, explaining where the dark matter may intervene to resolve the oddities observed before listing the general features of dark matter particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ρ c = 1.78 × 10−29 h 2, see Sect. 2.1.6.

  2. 2.

    η b = 6.19 × 10−10 as measured by WMAP.

References

  1. E.W. Kolb, M.S. Turner, Early Universe. Front. Phys. 69, 1 (1990)

    ADS  Google Scholar 

  2. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  3. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rept. 267, 195 (1996)

    Article  ADS  Google Scholar 

  4. F. Zwicky, Helv. Phys. Acta 6, 10 (1933) [Gen. Rel. Grav. 41, 207 (2009)]

    Google Scholar 

  5. G. Bertone, D. Hooper, History of dark matter. Rev. Mod. Phys. 90(4), 045002 (2018). https://doi.org/10.1103/RevModPhys.90.045002. [arXiv:1605.04909 [astro-ph.CO]]

  6. “The Dark Matter Problem: A Historical Perspective”; The Dark Matter Problem: A Historical Perspective

    Google Scholar 

  7. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279–390 (2005). https://doi.org/10.1016/j.physrep.2004.08.031. [arXiv:hep-ph/0404175 [hep-ph]]

  8. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F.S. Queiroz, Eur. Phys. J. C 78(3), 203 (2018). https://doi.org/10.1140/epjc/s10052-018-5662-y. [arXiv:1703.07364 [hep-ph]]

  9. P.J.E. Peebles, Cosmology’s Century: An Inside History of Our Modern Understanding of the Universe (Princeton University Press, Princeton, 2020)

    Book  Google Scholar 

  10. K.A. Olive, Inflation. Phys. Rept. 190, 307–403 (1990). https://doi.org/10.1016/0370-1573(90)90144-Q

    Article  ADS  Google Scholar 

  11. A.H. Guth, Adv. Ser. Astrophys. Cosmol. 3, 139–148 (1987). https://doi.org/10.1103/PhysRevD.23.347

    Google Scholar 

  12. A.D. Linde, Adv. Ser. Astrophys. Cosmol. 3, 149–153 (1987). https://doi.org/10.1016/0370-2693(82)91219-9

    Google Scholar 

  13. J.P. Ostriker, P.J.E. Peebles, Astrophys. J. 186, 467–480 (1973). https://doi.org/10.1086/152513

    Article  ADS  Google Scholar 

  14. V.C. Rubin, W.K. Ford, Jr., Astrophys. J. 159, 379–403 (1970). https://doi.org/10.1086/150317

    Article  ADS  Google Scholar 

  15. J. Oort, Bull. Astro. Inst. Neth. 6, 289–294 (1932)

    ADS  Google Scholar 

  16. A. Dekel, J. Silk, Astrophys. J. 303, 39–55 (1986). https://doi.org/10.1086/164050

    Article  ADS  Google Scholar 

  17. J.E. Gunn, B.W. Lee, I. Lerche, D.N. Schramm, G. Steigman, Astrophys. J. 223, 1015–1031 (1978). https://doi.org/10.1086/156335

    Article  ADS  Google Scholar 

  18. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Nucl. Phys. B 238, 453–476 (1984). https://doi.org/10.1016/0550-3213(84)90461-9

    Article  ADS  Google Scholar 

  19. M. Roos, arXiv:1001.0316 [astro-ph.CO]

    Google Scholar 

  20. R. Catena, P. Ullio, JCAP 1008, 004 (2010) [arXiv:0907.0018 [astro-ph.CO]]

    Google Scholar 

  21. H. Karttunen et al. Fundamental Astronomy (Springer, Berlin, 2007)

    Book  Google Scholar 

  22. B. Carrol, D. Ostlie, An Introduction of Modern Astrophysics (Pearson, London, 2007)

    Google Scholar 

  23. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563 (1996) [astro-ph/9508025]

    Google Scholar 

  24. S. Smith, Astrophys. J. 83, 23 (1936)

    Article  ADS  Google Scholar 

  25. D. Clowe, A. Gonzalez, M. Markevitch, Astrophys. J. 604, 596 (2004) [astro-ph/0312273]

    Google Scholar 

  26. http://chandra.harvard.edu/photo/2006/1e0657/, http://chandra.harvard.edu/press/06releases/press082106.html

  27. N.A. Bahcall, Phys. Scripta T 85, 32 (2000) [astro-ph/9901076]

    Google Scholar 

  28. E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]]

    Google Scholar 

  29. P.A.R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mambrini, Y. (2021). Introduction. In: Particles in the Dark Universe. Springer, Cham. https://doi.org/10.1007/978-3-030-78139-2_1

Download citation

Publish with us

Policies and ethics