Skip to main content

Application of Stem Cells in Treatment of Bone Diseases: Pre-clinical and Clinical Perspectives

  • Chapter
  • First Online:
Advances in Application of Stem Cells: From Bench to Clinics

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 69))

  • 823 Accesses

Abstract

The word “Stem Cell” first appeared in the scientific literature in 1868. Stem cells are cells which have the ability to self-renew and give rise to differentiated cells. In 1960, McCullough and till reported that the living tissues came from stem cells and with the concept of self-renewal. In the twentieth century with the discovery of hESC, it was believed that stem cells will give potential therapies for the chronic human diseases. There was a flood of research in every field including orthopaedic surgery. As the Mesenchymal stem cells are able to develop into tissues including bone, cartilage, muscle, tendon, and ligament. Trials were instituted to treat non-unions, long-bone defects, spinal cord Injury, osteonecrosis of head of femur, spinal cord injury, osteochondral defects, osteoarthritis, rotator cuff injuries, and tendon and ligament ruptures. Stem cell therapy requires a clear comprehension of the orthopaedic disease process before clinicians embark on the new strategies to treat old diseases. It is also imperative that practicing clinicians to have a knowledge of different cell sources like autologous, allogeneic and iPSC, and the culture methods and their limitations.

It is also strongly recommended that orthopaedic surgeons should not give up the well-known recommended treatment modalities of treatment until stem cell therapy is proved safe, efficacious, and cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudusaimi, A., Aihemaitijiang, Y., Wang, Y.-H., Cui, L., Maimaitiming, S., & Abulikemu, M. (2011). Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. Journal of International Medical Research, 39, 1852–1860.

    Article  CAS  Google Scholar 

  • Aimaiti, A., Saiwulaiti, Y., Saiyiti, M., Wang, Y.-H., Cui, L., & Yusufu, A. (2011). Therapeutic effect of osteogenically induced adipose derived stem cells on vascular deprivation-induced osteonecrosis of the femoral head in rabbits. Chinese Journal of Traumatology, 14, 215–220.

    PubMed  Google Scholar 

  • Allen, W. C., Pitrowski, G., Burstein, A. H., & Frankel, V. H. (1968). Biomechanical principles of intramedullary fixation. Clinical Orthopaedics, 60, 13–20.

    Article  CAS  Google Scholar 

  • Allgower, M., & Speigel, P. (1979). Internal fixation of fractures: Evolution of concepts. Clinical Orthopaedics, 138, 26–29.

    Google Scholar 

  • AlSayed, H. N., Sadat-Ali, M., Uddin, F. Z., Alani, F. M., & Acharya, S. (2018). Outcome of bone marrow derived chondrocyte injection for meniscal injuries: A preliminary study. Trends in Medicine, 18(5), 2–4.

    Google Scholar 

  • Antonic, A., Sena, E. S., Lees, J. S., Wills, T. E., Skeers, P., & Batchelor, P. E. et al. (2013). Stem cell transplantation in traumatic spinal cord injury: A systematic review and metaanalysis of animal studies. PLoS Biology, 11(12), e1001738. https://doi.org/10.1371/journal.pbio.1001738

  • Antonova, E., Le, T., Burge, R., & Mershon, J. (2013). Tibia shaft fractures: Costly burden of nonunions. BMC Musculoskeletal Disorders, 14, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Assessed January 2021. https://www.pbs.org/newshour/economy/making-sense/the-steep-economic-cost-of-contact-sports-injuries

  • Bajada, S., Harrison, P. E., Ashton, B. A., Cassar-Pullicino, V. N., Ashammakhi, N., & Richardson, J. B. (2007). Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. Journal of Bone and Joint Surgery, 89(10), 1382–1386.

    Article  CAS  Google Scholar 

  • Bellamy, N., Campbell, J., Robinson, V., Gee, T., Bourne, R., & Wells, G. (2006). Intra-articular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Systematic Review, 19(2), CD005328.

    Google Scholar 

  • Brabant, T., & Stichtenoth, D. (2005). Pharmacological treatment of osteoarthritis in the elderly. Zeitschrift Fur Rheumatologie, 64(7), 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Brittberg, M., Nilsson, A., Lindahl, A., et al. (1996). Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clinical Orthopaedics and Related Research, 326, 270–283.

    Article  Google Scholar 

  • Bruder, S. P., Fink, D. J., & Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Journal of Cellular Biochemistry., 56, 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Bruyere, O., & Reginster, J. Y. (2007). Glucosamine and chondroitin sulfate as therapeutic Agents for knee and hip osteoarthritis. Drugs and Aging, 24(7), 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Burge, R., Dawson-Hughes, B., Solomon, D. H., Wong, J. B., King, A., & Tosteson, A. (2007). Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. Journal of Bone and Mineral Research, 22, 465–475.

    Article  PubMed  Google Scholar 

  • Caminal, M., Fonseca, C., Peris, D., Moll, X., Rabanal, R. M., Barrachina, J., et al. (2014). Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. New Biotechnology, 31, 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Caplan, A. L. (1991). Mesenchymal stem Cells. Journal of Orthopaedic Research, 9, 641–650.

    Google Scholar 

  • Centeno, C. J., Busse, D., Kisiday, J., Keohan, C., Freeman, M., & Karli, D. (2008). Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 11, 343–353.

    PubMed  Google Scholar 

  • Chevalier, X. (2010). Intraarticular treatments for osteoarthritis: New perspectives. Current Drug Targets, 11, 546–560.

    Google Scholar 

  • Chiang, H., et al. (2005). Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. Journal of Orthopaedic Research, 23(3), 584–593.

    Article  PubMed  Google Scholar 

  • Cho, S. W., Sun, H. J., Yang, J. Y., Jung, J. Y., Choi, H. J., An, J. H., et al. (2012). Human adipose tissue-derived stromal cell therapy prevents bone loss in ovariectomized nude mouse. Tissue Engineering Part A, 18, 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J. J., Elmallah, R. K., Cherian, J. J., Kim, T. W., Lee, M. C., & Mont, M. A. (2015). A multicenter, single- blind, Phase IIA clinical trail to evaluate the efficacy and safety of a cell mediated gene therapy in degenerative arthritis patients. Human Gene Therapy Clinical Development, 26(2), 125–130. https://doi.org/10.1089/humc.2014.145 Epub 2015 Apr 17.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J., Kim, T., Kang, S., & Lee, B. (2017). A Phase III clinical results of InvossaTM: A clues for the potential disease modifying of a drug. The J of Cell Therapy, 19(5), S148.

    Google Scholar 

  • Claes, L. E., Helgele, C. A., Neidlinger-Wilke, C., Kasper, D., Seidl, W., & Margevicius, K. J., et al. (1998). Effect of mechanical factors on the fracture healing process. Clinical Orthopaedics, 355(Suppl), 132–147.

    Google Scholar 

  • ClinicalTrials.gov Identifier (NCT01532076). Assessed January 2021. www.clinicaltrials.gov

  • ClinicalTrials.gov Identifier: NCT02566655. Assessed January 2021. www.clinicaltrials.gov

  • Clouet, J., Vinatier, C., Merceron, C., Pot-vaucel, M., Maugars, Y., Weiss, P., et al. (2009). From oste- oarthritis treatments to future regenerative therapies for cartilage. Drug Discovery Today, 14, 913–925.

    Article  CAS  PubMed  Google Scholar 

  • Connolly, J. F., Guse, R., Tiedeman, J., & Dehne, R. (1991). Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clinical Orthopaedics and Related Research, 266, 259–270.

    Google Scholar 

  • Cooper, C., Cole, Z. A., Holroyd, C. R., Earl, S. C., Harvey, N. C., Dennison, E. M., et al. (2011). Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporosis International, 22(5), 1277–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. E Clinical Medicine, 29. https://doi.org/10.1016/j.eclinm.2020.100587. Assessed January 2020. www.cdc.gov

  • DeVivo, M. J. (1997). Causes and costs of spinal cord injury in the United States. Spinal Cord, 35, 809–813.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, T. M., Allen, T. D., lajtha, L. G., Schofield, R., & Bord, B. I. (1973). Stimulation of differentiation and pruliferation of haemopoietic cells in vitro. Journal Cellular Physiology, 82, 461–473.

    Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., & Krause, D., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The Interna- tional Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Google Scholar 

  • El-Tookhy, Abou Elkheir, W., Mokbel, A., & Osman, A. (2008). Intra-articular injection of autologous mesenchymal stem cells in experimental chondral defects in dogs. Egypt Rheumatologist, 30, 1–10.

    Google Scholar 

  • Ferris, D. J., Frisbie, D. D., Kisiday, J. D., Mcilwraith, C. W., Hague, B. A., Major, M. D., et al. (2014). Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Veterinary Surgery, 43, 255–265.

    Article  PubMed  Google Scholar 

  • Ficat, P., Arlet, J., Vidal, R., Ricci, A., & Fournial, J. C. (1971). Therapeutic results of drill biopsy in primary osteonecrosis of the femoral head (100 cases). Revue Du Rhumatisme Et Des Maladies Ostéo-Articulaires, 38, 269–276.

    CAS  PubMed  Google Scholar 

  • Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal Imbryol Experimental Morphology, 16, 881–890.

    Google Scholar 

  • Fukumoto, S., & Matsumoto, T. (2017). Recent advances in the management of osteoporosis. F1000Research, 6, 625.

    Google Scholar 

  • Garg, M. K., & Kharb, S. (2013). Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian Journal of Endocrinology and Metabolism, 17, 203–210.

    Google Scholar 

  • Goel, A., Sangwan, S. S., Siwach, R. C., & Ali, A. M. (2005). Percutaneous bone marrow grafting for the treatment of tibial non- union. Injury, 36(1), 203–206.

    Google Scholar 

  • Goshima, J., Goldberg, V. M., & Caplan, A. I. (1991). The osteogenic potential of culture-expanded rat bone marrow mes- enchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clinical Orthopaedics, 262, 298–311.

    Google Scholar 

  • Granero-Molto, F., Weis, J. A., Miga, M. I., Landis, B., Timothy, J., & Myers, T. J., et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 27(8), 1887–1898.

    Google Scholar 

  • Grigolo, B., Lisignoli, G., Desando, G., Cavallo, C., Marconi, E., Tschon, M., Giavaresi, G., Fini, M., & Giardino, R. (2009). Osteoarthritis treated with mesenchymal stem cells on hyaluronan- based scaffold in rabbit. Tissue Engineering Part c, Methods, 15, 647–658.

    Article  CAS  PubMed  Google Scholar 

  • Guimarães, J. A. M., Duarte, M. E. L., Fernandes, M. B. C., et al. (2014). The effect of autologous concentrated bone-marrow grafting on the healing of femoral shaft non-unions after locked intramedullary nailing. Injury, 45, S7–S13.

    Article  PubMed  Google Scholar 

  • Hadjiargyrou, M., McLeod, K., Ryaby, J. P., & Rubin, C. (1998). Enhancement of fracture healing by low intensity ultrasound. Clinical Orthopaedics, 355(Suppl), 216–229.

    Google Scholar 

  • Hatsushika, D., Muneta, T., Horie, M., Koga, H., Tsuji, K., & Sekiya, I. (2013). Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. Journal of Orthopaedic Research, 31, 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  • Hatsushika, D., Muneta, T., Nakamura, T., Horie, M., Koga, H., & Nakagawa, Y., et al. (2014). Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis Cartilage, 22, 941–950.

    Google Scholar 

  • Hernigou, P., & Beaujean, F. (2002). Treatment of osteonecrosis with autologous bone marrow grafting. Clinical Orthopaedics and Related Research, 405, 14–23.

    Article  Google Scholar 

  • Hernigou, P., Bernaudin, F., Reinert, P., Kuentz, M., & Vernant, J. P. (1997). Bone-marrow transplantation in sickle-cell disease. Effect on osteonecrosis: a case report with a four year follow-up. Journal Bone Joint Surgery, 79(11):1726–1730.

    Google Scholar 

  • Horie, M., Sekiya, I., Muneta, T., Ichinose, S., Matsumoto, K., Saito, H., et al. (2009). Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 27, 878–887.

    Article  CAS  PubMed  Google Scholar 

  • Houdek, M. T., Wyles, C. C., Martin, J. R., & Sierra, R. J. (2014). Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem cells and cloning. Advances and Applications, 7, 65–70.

    Google Scholar 

  • Hur, J. W., Cho, T. H., Park, D. H., Lee, J. B., Park, J. Y., & Chung, Y. G. (2016). Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. Journal of Spinal Cord Medicine, 39(6), 655–664.

    Article  Google Scholar 

  • Im, G. I., Kim, D. Y., Shin, J. H., et al. (2001). Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. Journal of Bone and Joint Surgery, 83, 289–294.

    Article  CAS  Google Scholar 

  • Ince, A., Lermann, J., Göbel, S., Wollmerstedt, N., & Hendrich, C. (2006). No increased stem subsidence after arthroplasty in young patients with femoral head osteonecrosis: 41 patients followed for 1–9 years. Acta Orthopaedica, 77, 866–870.

    Article  PubMed  Google Scholar 

  • Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., et al. (2005). Transplantation of human neural stem cells for spinal cord injury in primates. Journal of Neuroscience Research, 80(2), 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Jawad, A. S., & Irving, K. (2007). Drug treatment modalities in patients with chronic osteoarthritis of the hip or knee. Saudi Medical Journal, 28(3), 375–378.

    PubMed  Google Scholar 

  • Jeon, S. R., Park, J., Lee, J. H., Kim, H. S., Sung, I. Y., Choi, G. H., et al. (2010). Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Engineering Regenerative Medicine, 7, 316–322.

    Google Scholar 

  • Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., et al. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells, 32(5), 1254–1266.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, K., & Croft, P. (2005). The prevalence and history of knee osteoarthritis in general practice: A case–control study. Family Practice, 22(1), 103–108.

    PubMed  Google Scholar 

  • Kanakaris, N., & Giannoudis, P. (2007). The health economics of long-bone non-unions. Injury, 38, S77–S84.

    Article  PubMed  Google Scholar 

  • Kanaya, A., Deie, M., Adachi, N., Nishimori, M., Yanada, S., & Ochi, M. (2007). Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy, 23(6), 610–617.

    Article  PubMed  Google Scholar 

  • Kassem, M. S. (2013). Percutaneous autogenous bone marrow injec- tion for delayed union or non-union of fractures after internal fixation. Acta Orthopaedica Belgica, 2013(79), 711–717.

    Google Scholar 

  • Kim, S. J., Shin, Y. W., Yang, K. H., Kim, S. B., Yoo, M. J., Suk-Ku Han, S. K., et al. (2009). A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskeletal Disorders, 10, 20. https://doi.org/10.1186/1471-2474-10-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. H., Choi, Y., & Kim, J. S. (2011). Cementless total hip arthroplasty with alumina-on-highly cross-linked polyethylene bearing in young patients with femoral head osteonecrosis. Journal of Arthroplasty, 26, 218–223.

    Article  CAS  Google Scholar 

  • Kim, Y. C., Kim, Y. H., Kim, J. W., & Ha, K. Y. (2016). Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: Comparative study between intralesional injection and scaffold based transplantation. Journal of Korean Medical Science, 31(9), 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshizuka, S., Okada, S., Okawa, A., Koda, M., Murasawa, M., Hashimoto, M., et al. (2004). Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. Journal of Neuropathology and Experimental Neurology, 63(1), 64–72.

    Article  PubMed  Google Scholar 

  • Ledingham, J., & Snowden, N. (2017). Diagnosis and early management of inflammatory arthritis. BMJ, 358, j3248.

    Google Scholar 

  • Lee, H. S., Huang, G. T., Chiang, H., Chiou, L. L., Chen, M. H., Hsieh, C. H., & Jiang, C. C. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells, 21(2), 190–199.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. H., Liao, W., Cui, X. L., Zhao, Q., Liu, M., Chen, Y.-H., Liu, T.-S., Liu, N.-L., Wang, F., Yi, Y., & Shao, N.-S. (2011). Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. International Journal of Medical Sciences, 8(1), 74–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman, J. R. (2004). Core decompression for osteonecrosis of the hip. Clinical Orthopaedics and Related Research, 418, 29–33.

    Article  Google Scholar 

  • Lieberman, J. R., Conduah, A., & Urist, M. R. (2004). Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clinical Orthopaedics and Related Research, 429, 139–145.

    Article  Google Scholar 

  • Lim, H. C., Lee, B.-G., Choi, J.-H., Jeong, H.-J., Chul-won Ha, C.-W., & Yoon, J.-R., et al. (2017). Follow-up study of CARTISTEM® versus microfracture for the treatment of knee articular cartilage injury or defect—Full Text View—ClinicalTrials.gov. Accessed 5 January 2021. https://clinicaltrials.gov/ct2/show/NCT01626677

  • Miki, S., Takao, M., Miyamoto, W., Matsushita, T., & Kawano, H. (2015). Intra-articular injection of synovium-derived mesenchymal stem cells with hyaluronic acid can repair articular cartilage defects in a canine model. Journal Stem Cell Research Therapy, 5, 1000314.

    Article  CAS  Google Scholar 

  • Mills, L. A., Aitken, S. A., & Simpson, A. (2017). The risk of non-union per fracture: Current myths and revised figures from a population of over 4 million adults. Acta Orthopaedica, 88, 434–439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mont, M. A., Ragland, P. S., & Etienne, G. (2004). Core decompression of the femoral head for osteonecrosis using percutaneous multiple small-diameter drilling. Clinical Orthopaedics and Related Research, 429, 131–138.

    Article  Google Scholar 

  • Mont, M. A., Marulanda, G. A., Seyler, T. M., Plate, J. F., & Delanois, R. E. (2007). Core decompression and nonvascularized bone grafting for the treatment of early stage osteonecrosis of the femoral head. Instructional Course Lectures, 56, 213–220.

    PubMed  Google Scholar 

  • Morita, T., Sasaki, M., Kataoka-Sasaki, Y., Nakazaki, M., Nagahama, H., Oka, S., et al. (2016). Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience, 335, 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Moseley, B. (2009). Arthroscopic surgery did not provide additional benefit to physical and medical therapy for osteoarthritis of the knee. Journal of Bone and Joint Surgery, 91, 1281.

    Article  Google Scholar 

  • Muguruma, Y., Yahata, T., Miyatake, H., Sato, T., Uno, T., Itoh, J., et al. (2006). Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 107, 1878–1887.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, Y., Muneta, T., Kondo, S., Mizuno, M., Takakuda, K., Ichinose, S., Tabuchi, T., Koga, H., Tsuji, K., & Sekiya, I. (2015). Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis and Cartilage, 23, 1007–1017.

    Google Scholar 

  • Ocarino, N. D., Boeloni, J. N., Jorgetti, V., Gomes, D. A., Goes, A. M., & Serakides, R. (2010). Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connective Tissue Research, 51, 426–433.

    Article  CAS  Google Scholar 

  • Oe, K., Kushida, T., Okamoto, N., Umeda, M., Nakamura, T., Ikehara, S., et al. (2011). New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Development, 20(4), 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Onoi, Y., Hiranaka, T., Nishida, R., Takase, K., Fujita, M., & Hida, Y., et al. (2019). Second-look arthroscopic findings of cartilage and meniscus repair after injection of adipose-derived regenerative cells in knee osteoarthrits: Report of two cases. Regenerative Therapy, 11, 212–216.

    Google Scholar 

  • Owen, M. (1970). The origin of bone cells. International Review of Cytology, 28, 213–238.

    Article  CAS  PubMed  Google Scholar 

  • Owen, M., & Macpherson, S. (1963). Cell population kinetics of an osteogenic tissue. II. J Cell Biol, 19, 44–83.

    Google Scholar 

  • Palombella, S., Lopa, S., Gianola, S., Zagra, L., Moretti, M., & Lovati, A. B. (2019). Bone marrow-derived cell therapies to heal long-bone nonunions: A systematic review and meta-analysis—Which is the best available treatment? Stem Cells International, Article ID 3715964, 12. https://doi.org/10.1155/2019/3715964

  • Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C., & Park, Y. G. (2017). Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Translational Medicine, 6(2), 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Pazianas, M., & Abrahamsen, B. (2016). Osteoporosis treatment: Bisphosphonates reign to continue for a few more years, at least? Annals of the New York Acadamy of Sciences, 1376, 5–13.

    Google Scholar 

  • Peat, G., McCarney, R., & Croft, P. (2001). Knee pain and osteoarthritis in older adults: A review of the community burden and current use of primary health care. Annals of the Rheumatic Diseases, 60, 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, D. (2000). Patients’ voices: The powerful sound in the stem cell debate. Science, 287, 1423.

    Article  CAS  PubMed  Google Scholar 

  • Persiani, P., De Cristo, C., Graci, J., Noia, G., Gurzì, M., & Villani, C. (2015). Stage-related results in treatment of hip osteonecrosis with core-decompression and autologous mesenchymal stem cells. Acta Orthopaedica Belgica, 81, 406–412.

    PubMed  Google Scholar 

  • Petek, D., Hannouche, D., & Suva, D. (2019). Osteonecrosis of the femoral head: Pathophysiology and current concepts of treatment. EFORT Open Reviews, 4(3), 85–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn, R. H., Murray, J. N., Pezold, R., & Sevarino, K. S. (2018). Surgical management of osteoarthritis of the knee. Journal of the American Academy Orthopaedics Surgery, 26(9), e191–e19311; Sadat-Ali, M., Al-Habdan, I., & El-Hassan, A. Y. (2006). Is there an alternative to NSAIDs and Cox-2 inhibitors in the management of osteoarthritis of knee. Ostetoporosis International, 17(1), P192.

    Google Scholar 

  • Rahfoth, B., Weisser, J., Sternkopf, F., et al. (1998). Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage, 6, 50–65.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ibán, M. N., Díaz-Heredia, J., García-Gómez, I., Gonzalez-Lizán, F., Elías-Martín, E., & Abraira, V. (2011). The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: An experimental study in rabbits. Arthroscopy, 27, 1688–2196.

    Article  PubMed  Google Scholar 

  • Ryaby, J. T. (1998). Clinical effects of electromagnetic and electric fields on fracture healing. Clinical Orthopaedics, 355(Suppl), 205–215.

    Google Scholar 

  • Sadat-Ali, M., Q Azam, M. Q., Elshabouri, E. M., Tantawy, A. M., & Acharya, S. ( 2017). Stem cell therapy for avascular necrosis of femoral head in sickle cell disease: Report of 11 cases and review of literature. International Journal of Stem Cells, 10(2), 179–183.

    Google Scholar 

  • Sadat-Ali, M., Al-Turki, H. A., Acharya, S., & Al-Dakheel, D. A. (2018). Bone Marrow-derived Osteoblasts in the Management of Ovariectomy induced Osteoporosis in Rats. Journal of Stem Cells and Regenerative Medicine JSRM, 14(2), 1–6.

    Google Scholar 

  • Sadat-Ali, M., Al-Dakheel, D. A., AlMousa, S. A., AlAnii, F. M., Ebrahim, W., AlOmar, H. K., et al. (2019). Stem-cell therapy for ovariectomy-induced osteoporosis in rats: A comparison of three treatment modalities. Stem Cells and Cloning: Advances and Applications, 12, 27–48.

    Google Scholar 

  • Sadat-Ali, M., Al-Dakheel, D. A., Ahmed, A., Al-Turki, H. A., Al-Omran, A. S., Acharya, S., et al. (2020). Spinal cord injury regeneration using autologous bone marrow- derived neurocytes and rat embryonic stem cells: A comparative study in rats. World Journal of Stem Cells, 12(12), 1591–1616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuh, A., Jezussek, D., Fabijani, R., & Honle, W. (2007). Conservative therapy of knee osteoarthritis. MMW Fortschritte Der Medizin, 149, 31–32.

    Article  CAS  PubMed  Google Scholar 

  • Sekiya, I., Koga, H., Otabe, K., Nakagawa, Y., Katano, H., Ozeki, N., et al. (2019). Additional use of synovial mesenchymal stem cell transplantation following surgical repair of a complex degenerative tear of the medial meniscus of the knee: A case report. Cell Transplantation, 28, 1445–1454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen, R. K., Tripathy, S. K., Aggarwal, S., Marwaha, N., Sharma, R. R., & Khandelwal, N. (2012). Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: A randomized control study. Journal of Arthroplasty, 27(5), 679–686.

    Article  Google Scholar 

  • Senthilkumar, V., Goel, S., & Gupta, K. K. (2018). Stem cells in fracture gap non union. Orthopaedic Proceedings, 96(B), No. SUPP11.

    Google Scholar 

  • Seyler, T. M., Marker, D. R., Ulrich, S. D., Fatscher, T., & Mont, M. A. (2008). Nonvascularized bone grafting defers joint arthroplasty in hip osteonecrosis. Clinical Orthopaedics and Related Research, 466, 1125–1132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, K., Drury, T., Roic, I., Hansen, P., Malin, M., & Boyd, R., et al. (2018). Allogeneic adult stem cell therapy and other joint defects. Stem Cells International, Article ID 7309201, 7. https://doi.org/10.1155/2018/7309201

  • Soler, R., Orozco, L., Munar, A., Huguet, M., López, R., Vives, J., et al. (2016). Final results of a phase III trial using ex vivo expanded autologous Mesenchymal Stromal Cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. The Knee, 23(4), 647–654.

    Article  PubMed  Google Scholar 

  • Steinberg, M. E., Brighton, C.T., & Corces, A, et al. (1989). Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clinical Orthopaedics Related Research, 249, 199–208.

    Google Scholar 

  • Sugaya, H., Mishima, H., Aoto, K., et al. (2014). Percutaneous autologous concentrated bone marrow grafting in the treatment for nonunion. European Journal of Orthopaedic Surgery and Traumatology, 24, 671–678.

    Article  PubMed  Google Scholar 

  • Sun, Y., Feng, Y., Zhang, C., Cheng, X., Chen, S., Ai, Z., & Zeng, B. (2011). Beneficial effect of autologous transplantation of endothelial progenitor cells on steroid-induced femoral head osteonecrosis in rabbits. Cell Transplantation, 20, 233–243.

    Article  PubMed  Google Scholar 

  • Syková, E., Jendelová, P., Urdzíková, L., Lesný, P., & Hejcl, A. (2006). Bone marrow stem cells and polymer hydrogels—Two strategies for spinal cord injury repair. Cellular and Molecular Neurobiology, 26, 1113–1129.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli, M., & Crosby, W. H. (1968). Transplantation of marrow to extramedullary sites. Science, 161, 54–56.

    Article  CAS  PubMed  Google Scholar 

  • Tetik, C., Başar, H., Bezer, M., Erol, B., Ağir, I., & Esemenli, T. (2011). Comparison of early results of vascularized and non-vascularized fibular grafting in the treatment of osteonecrosis of the femoral head. Acta Orthopaedica Et Traumatologica Turcica, 45, 326–334.

    PubMed  Google Scholar 

  • The University of Alabama National Spinal Cord Injury Statistical Center. (2002).

    Google Scholar 

  • Thomas, E. D., Lochte, H. I., Jr., Lu, W. C., & Ferrebee, J. W. (1957). Intravenous infusion of the bone marrow in patients receiving radiation and chemotherapy. New England Journal of Medicine, 257, 491–496.

    Article  CAS  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Toma, J. G., McKenzie, I. A., Bagli, D., et al. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23, 727–737.

    Article  CAS  PubMed  Google Scholar 

  • Trancik, T., Lunceford, E., & Strum, D. (1990). The effect of electrical stimulation on osteonecrosis of the femoral head. Clinical Orthopaedics and Related Research, 256, 120–124.

    Google Scholar 

  • Undale, A., Fraser, D., Hefferan, T., Kopher, R. A., Herrick, J., Evans, G. L., et al. (2011). Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. Journal of Orthopaedic Research, 29(12), 1804–1811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangsness, C. T., Farr, J., Boyd, J., Dellaero, D. T., Mills, C. R., & LeRoux-Williams, M. (2014). Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy—A Randomized, Double-Blind, Controlled Study. Journal of Bone and Joint Surgerys, 96, 90–98.

    Google Scholar 

  • Vijayakumar, R., & Büsselberg, D. (2016). Osteoporosis: An under-recognized public health problem: Local and global risk factors and its regional and worldwide prevalence. Journal of Local and Global Health Science, 2.

    Google Scholar 

  • Wakitani, S., Goto, T.., Pineda, S. J., Young, R. G., Mansour, J. M., & Caplan, A. I., et al. (1994). Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. The Journal of Bone and Joint Surgery, 76(A), 579–592.

    Google Scholar 

  • Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N., & Yoneda, M. (2002). Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage, 10, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. J., Wang, F. S., Huang, C. C., Yang, K. D., Weng, L. H., & Huang, H. Y. (2005). Treatment for osteonecrosis of the femoral head: Comparison of extracorporeal shock waves with core decompression and bone-grafting. Journal of Bone and Joint Surgery. American Volume, 87, 2380–2387.

    Article  Google Scholar 

  • Wang, Z., Goh, J., De, S. D., Ge, Z., Ouyang, H., Chong, J. S., et al. (2006). Efficacy of bone marrow–derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Engineering, 12, 1753–1761.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Uchida, K., Nakajima, H., Matsuo, H., Sugita, D., Yoshida, A., et al. (2015). Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain- related signaling cascades and reduced inflammatory cell recruitment. Stem Cells, 33(6), 1902–1914.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Q., Jin, D., Zhou, C.-Y., Zhou, M.-Q., Luo, W., & Ma, L. (2012). HGF-transgenic MSCs can improve the effects of tissue self-repair in a rabbit model of traumatic osteonecrosis of the femoral head. PLoS One, 7, e37503. https://doi.org/10.1371/journal.pone.0037503

  • Xie, X.-H., Wang, X.-L., He, Y.-X., Liu, Z., Sheng, H., Zhang, G., & Qin, L. (2012). Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. Arthritis and Rheumatism, 64, 1562–1571.

    Article  PubMed  Google Scholar 

  • Yoshioka, T., Mishima, H., Akaogi, H., Sakai, S., Li, M., & Ochiai, N. (2011). Concentrated autologous bone marrow aspirate transplantation treatment for corticosteroid-induced osteonecrosis of the femoral head in systemic lupus erythematosus. International Orthopaedics, 35(6), 823–829.

    Article  PubMed  Google Scholar 

  • Yousefifard, M., Nasirinezhad, F., Shardi Manaheji, H., Janzadeh, A., Hosseini, M., & Keshavarz, M. (2016). Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alle- viating neuropathic pain in a spinal cord injury model. Stem Cell Research & Therapy, 7, 36.

    Article  Google Scholar 

  • Zhang, B. Y., Wang, B. Y., Li, S. C., Luo, D. Z., Zhan, X., Chen, S. F., Chen, Z. S., Liu, C. Y., Ji, H. Q., Bai, Y. S., Li, D. S., & He, Y. (2018). Evaluation of the curative effect of umbilical cord mesenchymal stem cell therapy for knee arthritis in dogs using imaging technology. Stem Cells International, 2018, 1983025.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, D., Cui, D., Wang, B., Tian, F., Guo, L., Yang, L., Liu, B., & Yu, X. (2012). Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow- derived and cultured mesenchymal stem cells. Bone, 50, 325–330.

    Article  PubMed  Google Scholar 

  • Zhou, H. L., Zhang, X. J., Zhang, M. Y., Yan, Z. J., Xu, Z. M., & Xu, R. X. (2016). Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury. Neurochemical Research, 41(10), 2708–2718.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, G., & Moghaddam, A. (2010). Trauma: Non-union: New trends. European Instructional Lectures, 10, 10–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Sadat-Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadat-Ali, M. (2021). Application of Stem Cells in Treatment of Bone Diseases: Pre-clinical and Clinical Perspectives. In: Khan, F.A. (eds) Advances in Application of Stem Cells: From Bench to Clinics. Stem Cell Biology and Regenerative Medicine, vol 69. Humana, Cham. https://doi.org/10.1007/978-3-030-78101-9_8

Download citation

Publish with us

Policies and ethics