Skip to main content

Interventional Image-Guided HDR Brachytherapy as a Salvage Treatment: Exclusive or in Combination with Other Local Therapies

  • Chapter
  • First Online:
Manual on Image-Guided Brachytherapy of Inner Organs

Abstract

Local treatments play an important role in the management of oncological diseases; within this framework, Interventional brachytherapy (iBT), also known as interventional radiotherapy (IRT), can allow delivery of high doses to clinical targets both in curative and in salvage treatments. In this context, interventional radiology (IR) could also play a relevant role.

A multidisciplinary approach, based on close cooperation between IRT and IR experts, provides patient-adapted treatment options.

In this chapter, we will introduce the clinical rationale for IRT and IR in different cancer types with the main focus on liver, lung, and head & neck (H&N) cancers.

We will also analyze the possibility of combining iBT and IR, in the clinical subsets mentioned previously.

This chapter will include an overview of current evidence in the literature, description of the procedures performed in different anatomical regions, and the associated risks.

We will furthermore underline the benefits and opportunities of performing local treatments and their best combination sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Autorino R, et al. A national survey of AIRO (Italian Association of Radiation Oncology) brachytherapy (Interventional Radiotherapy) study group. J Contemp Brachytherapy. 2018;10:254–9. https://doi.org/10.5114/jcb.2018.76981. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kovács G, et al. TURKISH JOURNAL of ONCOLOGY interventional oncology: should interventional radiotherapy (brachytherapy) be integrated into modern treatment procedures? J Oncol. 2019b;34:16–22. https://doi.org/10.5505/tjo.2019.4.

    Article  Google Scholar 

  3. Kovács G, Tagliaferri L, Valentini V. Is an Interventional Oncology Center an advantage in the service of cancer patients or in the education? The Gemelli Hospital and INTERACTS experience. J Contemp Brachyther. 2017a;9:497–8. https://doi.org/10.5114/jcb.2017.72603. Termedia Publishing House Ltd.

    Article  Google Scholar 

  4. Lancellotta V, et al. Age is not a limiting factor in interventional radiotherapy (brachytherapy) for patients with localized cancer. Biomed Res Int. 2018;2018:2178469. https://doi.org/10.1155/2018/2178469. Hindawi Limited.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology. 2016;150:835–53. https://doi.org/10.1053/j.gastro.2015.12.041. W.B. Saunders.

    Article  PubMed  Google Scholar 

  6. Dionisi F, et al. Radiotherapy in the multidisciplinary treatment of liver cancer: a survey on behalf of the Italian Association of Radiation Oncology. Radiol Med. 2016;121(9):735–43. https://doi.org/10.1007/s11547-016-0650-5. Springer-Verlag Italia s.r.l.

    Article  PubMed  Google Scholar 

  7. Hass P, Mohnike K, et al. Comparative analysis between interstitial brachytherapy and stereotactic body irradiation for local ablation in liver malignancies. Brachytherapy. 2019a;18(6):823–8. https://doi.org/10.1016/j.brachy.2019.08.003. Elsevier Inc.

    Article  PubMed  Google Scholar 

  8. Kieszko D, et al. Treatment of hepatic metastases with computed tomography-guided interstitial brachytherapy. Oncol Lett. 2018;15(6):8717–22. https://doi.org/10.3892/ol.2018.8415. Spandidos Publications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogel A, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv238–55. https://doi.org/10.1093/annonc/mdy308. Oxford University Press.

    Article  CAS  PubMed  Google Scholar 

  10. Kovács A, et al. Critical review of multidisciplinary non-surgical local interventional ablation techniques in primary or secondary liver malignancies. J Contemp Brachytherapy. 2019a;11:589–600. https://doi.org/10.5114/jcb.2019.90466. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ricke J, Wust P. Computed tomography-guided brachytherapy for liver cancer. Semin Radiat Oncol. 2011;21:287–93. https://doi.org/10.1016/j.semradonc.2011.05.005.

    Article  PubMed  Google Scholar 

  12. Schnapauff D, et al. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma’. Cardiovasc Interv Radiol. 2012;35(3):581–7. https://doi.org/10.1007/s00270-011-0249-0. Springer New York LLC.

    Article  Google Scholar 

  13. Schnapauff D, et al. Activity-based cost analysis of hepatic tumor ablation using CT-guided high-dose rate brachytherapy or CT-guided radiofrequency ablation in hepatocellular carcinoma. Radiat Oncol. 2016;11(1):26. https://doi.org/10.1186/s13014-016-0606-x. BioMed Central Ltd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steffen IG, et al. Value of combined PET/CT for radiation planning in CT-guided percutaneous interstitial high-dose-rate single-fraction brachytherapy for colorectal liver metastases. Int J Radiat Oncol Biol Phys. 2010;77(4):1178–85. https://doi.org/10.1016/j.ijrobp.2009.06.047.

    Article  PubMed  Google Scholar 

  15. Hass P, Steffen IG, et al. First report on extended distance between tumor lesion and adjacent organs at risk using interventionally applied balloon catheters: a simple procedure to optimize clinical target volume covering effective isodose in interstitial high-dose-rate brachytherapy of liver malignomas. J Contemp Brachytherapy. 2019b;11(2):152–61. https://doi.org/10.5114/jcb.2019.84798. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Collettini F, Golenia M, et al. Percutaneous computed tomography-guided high-dose-rate brachytherapy ablation of breast cancer liver metastases: initial experience with 80 lesions. J Vasc Interv Radiol. 2012a;23(5):618–26. https://doi.org/10.1016/j.jvir.2012.01.079.

    Article  PubMed  Google Scholar 

  17. Mohnike K, et al. Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys. 2010;78(1):172–9. https://doi.org/10.1016/j.ijrobp.2009.07.1700. Elsevier.

    Article  PubMed  Google Scholar 

  18. Wieners G, et al. Treatment of hepatic metastases of breast cancer with CT-guided interstitial brachytherapy—a phase II-study. Radiother Oncol. 2011;100(2):314–9. https://doi.org/10.1016/j.radonc.2011.03.005.

    Article  PubMed  Google Scholar 

  19. Collettini F, et al. CT-gesteuerte Hochdosis-Brachytherapie beim inoperablen hepatozellulären Karzinom. Strahlenther Onkol. 2015;191(5):405–12. https://doi.org/10.1007/s00066-014-0781-3. Urban und Vogel GmbH.

    Article  PubMed  Google Scholar 

  20. Collettini F, Schnapauff D, et al. Hepatocellular carcinoma: computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of large (5-7 cm) and very large (>7 cm) tumours. Eur Radiol. 2012b;22(5):1101–9. https://doi.org/10.1007/s00330-011-2352-7.

    Article  Google Scholar 

  21. Denecke T, et al. CT-guided interstitial brachytherapy of hepatocellular carcinoma before liver transplantation: an equivalent alternative to transarterial chemoembolization? Eur Radiol. 2015;25(9):2608–16. https://doi.org/10.1007/s00330-015-3660-0. Springer.

    Article  PubMed  Google Scholar 

  22. Ricke J, et al. Liver malignancies: CT-guided interstitial brachytherapy in patients with unfavorable lesions for thermal ablation. J Vasc Interv Radiol. 2004;15(11):1279–86. https://doi.org/10.1097/01.RVI.0000141343.43441.06. Lippincott Williams and Wilkins.

    Article  PubMed  Google Scholar 

  23. Mohnike K, et al. Radioablation by image-guided (HDR) brachytherapy and transarterial chemoembolization in hepatocellular carcinoma: a randomized phase II trial. Cardiovasc Interv Radiol. 2019;42(2):239–49. https://doi.org/10.1007/s00270-018-2127-5. Springer New York LLC.

    Article  Google Scholar 

  24. Wieners G, et al. CT-guided high-dose-rate brachytherapy in the interdisciplinary treatment of patients with liver metastases of pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2015;14(5):530–8. https://doi.org/10.1016/S1499-3872(15)60409-X. Elsevier (Singapore) Pte Ltd.

    Article  PubMed  Google Scholar 

  25. Collettini F, et al. Computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum. Eur J Radiol. 2013;82(10):e509–14. https://doi.org/10.1016/j.ejrad.2013.04.046. Elsevier Ireland Ltd.

    Article  PubMed  Google Scholar 

  26. Becker G, et al. Combined TACE and PEI for palliative treatment of unresectable hepatocellular carcinoma. World J Gastroenterol. 2005;11(39):6104–9. https://doi.org/10.3748/wjg.v11.i39.6104. WJG Press.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Katsanos K, et al. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: a network meta-analysis of randomized controlled trials. PLoS One. 2017;12(9):e0184597. https://doi.org/10.1371/journal.pone.0184597. Public Library of Science.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pitton MB, et al. Randomized comparison of selective internal radiotherapy (SIRT) versus drug-eluting bead transarterial chemoembolization (DEB-TACE) for the treatment of hepatocellular carcinoma. Cardiovasc Interv Radiol. 2015;38(2):352–60. https://doi.org/10.1007/s00270-014-1012-0. Springer New York LLC.

    Article  Google Scholar 

  29. Wang YB, et al. Quality of life after radiofrequency ablation combined with transcatheter arterial chemoembolization for hepatocellular carcinoma: comparison with transcatheter arterial chemoembolization alone. Qual Life Res. 2007;16(3):389–97. https://doi.org/10.1007/s11136-006-9133-9.

    Article  PubMed  Google Scholar 

  30. Van Cutsem E, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422. https://doi.org/10.1093/annonc/mdw235. Oxford University Press.

    Article  PubMed  Google Scholar 

  31. Iezzi R, Kovacs A, et al. Transarterial chemoembolisation of colorectal liver metastases with irinotecan-loaded beads: what every interventional radiologist should know. Eur J Radiol Open. 2020b;7:100236. https://doi.org/10.1016/j.ejro.2020.100236. Elsevier Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Llovet JM, et al. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43. https://doi.org/10.1016/j.jhep.2011.12.001. Elsevier.

    Article  Google Scholar 

  33. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329–37. https://doi.org/10.1055/s-2007-1007122. Thieme Medical Publishers, Inc.

    Article  CAS  PubMed  Google Scholar 

  34. Pereira PL, et al. The CIREL cohort: a prospective controlled registry studying the real-life use of irinotecan-loaded chemoembolisation in colorectal cancer liver metastases: interim analysis. Cardiovasc Interv Radiol. 2020;44(1):50–62. https://doi.org/10.1007/s00270-020-02646-8. Springer.

    Article  Google Scholar 

  35. Iezzi R, et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib. Eur Radiol. 2019;29(3):1285–92. https://doi.org/10.1007/s00330-018-5692-8. Springer.

    Article  PubMed  Google Scholar 

  36. Smits MLJ, et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase i HEPAR trial. J Exp Clin Cancer Res. 2010;29(1):70. https://doi.org/10.1186/1756-9966-29-70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang EA, et al. Treatment options for unresectable HCC with a focus on SIRT with Yttrium-90 resin microspheres. Int J Clin Pract. 2017. https://doi.org/10.1111/ijcp.12972. Blackwell Publishing Ltd.

  38. Iezzi R, et al. Combined locoregional treatment of patients with hepatocellular carcinoma: state of the art. World J Gastroenterol. 2016;22:1935–42. https://doi.org/10.3748/wjg.v22.i6.1935. Baishideng Publishing Group Co., Limited.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JW, et al. Hepatocellular carcinomas 2-3 cm in diameter: transarterial chemoembolization plus radiofrequency ablation vs. radiofrequency ablation alone. Eur J Radiol. 2012;81(3):e189–93. https://doi.org/10.1016/j.ejrad.2011.01.122.

    Article  PubMed  Google Scholar 

  40. Sheta E, et al. Comparison of single-session transarterial chemoembolization combined with microwave ablation or radiofrequency ablation in the treatment of hepatocellular carcinoma: a randomized-controlled study. Eur J Gastroenterol Hepatol. 2016;28(10):1198–203. https://doi.org/10.1097/MEG.0000000000000688. Lippincott Williams and Wilkins.

    Article  CAS  PubMed  Google Scholar 

  41. Luo JJ, et al. Endovascular brachytherapy combined with stent placement and TACE for treatment of HCC with main portal vein tumor thrombus. Hepatol Int. 2016;10(1):185–95. https://doi.org/10.1007/s12072-015-9663-8. Springer.

    Article  PubMed  Google Scholar 

  42. Abtin FG, et al. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics. 2012;32(4):947–69. https://doi.org/10.1148/rg.324105181.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, et al. Meta-analysis of lobectomy, segmentectomy, and wedge resection for stage I non-small cell lung cancer. J Surg Oncol. 2015;111(3):334–40. https://doi.org/10.1002/jso.23800. Wiley.

    Article  PubMed  Google Scholar 

  44. Chheang S, et al. Imaging features following thermal ablation of lung malignancies. Semin Interv Radiol. 2013;30(2):157–68. https://doi.org/10.1055/s-0033-1342957. Thieme Medical Publishers, Inc.

    Article  Google Scholar 

  45. Lencioni R. Quality of life as an endpoint of treatment efficacy in malignant lung tumours—author’s reply. Lancet Oncol. 2008:821–2. https://doi.org/10.1016/S1470-2045(08)70220-1. Elsevier.

  46. Van Limbergen E, et al. THE GEC ESTRO HANDBOOK OF BRACHYTHERAPY, Part II Clinical Practice Version 1 - 30/04/2017.

    Google Scholar 

  47. Stewart A, et al. American Brachytherapy Society consensus guidelines for thoracic brachytherapy for lung cancer. Brachytherapy. 2016;15(1):1–11. https://doi.org/10.1016/j.brachy.2015.09.006. Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  48. Skowronek J, et al. HDR endobronchial brachytherapy (HDRBT) in the management of advanced lung cancer—comparison of two different dose schedules. Radiother Oncol. 2009;93(3):436–40. https://doi.org/10.1016/j.radonc.2009.09.005.

    Article  PubMed  Google Scholar 

  49. Skowronek J. Brachytherapy in the treatment of lung cancer—a valuable solution. J Contemp Brachytherapy. 2015;7(4):297–311. https://doi.org/10.5114/jcb.2015.54038. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang LFL, et al. High dose rate afterloading intraluminal brachytherapy in malignant airway obstruction of lung cancer. Int J Radiat Oncol Biol Phys. 1994;28(3):589–96. https://doi.org/10.1016/0360-3016(94)90183-X.

    Article  CAS  PubMed  Google Scholar 

  51. Macha HN, et al. Endobronchial radiation therapy for obstructing malignancies: ten years’ experience with iridium-192 high-dose radiation brachytherapy afterloading technique in 365 patients. Lung. 1995;173(5):271–80. https://doi.org/10.1007/BF00176890. Springer.

    Article  CAS  PubMed  Google Scholar 

  52. Soror T, et al. Salvage treatment with sole high-dose-rate endobronchial interventional radiotherapy (brachytherapy) for isolated endobronchial tumor recurrence in non–small-cell lung cancer patients: a 20-year experience. Brachytherapy. 2019;18(5):727–32. https://doi.org/10.1016/j.brachy.2019.04.271. Elsevier Inc.

    Article  PubMed  Google Scholar 

  53. Hennequin C, et al. Endoluminal brachytherapy: bronchus and oesophagus. Cancer Radiother. 2018;22:367–71. https://doi.org/10.1016/j.canrad.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  54. Ji Z, et al. Safety and efficacy of CT-guided radioactive iodine-125 seed implantation assisted by a 3D printing template for the treatment of thoracic malignancies. J Cancer Res Clin Oncol. 2020;146(1):229–36. https://doi.org/10.1007/s00432-019-03050-7. Springer.

    Article  PubMed  Google Scholar 

  55. Jiang AG, Lu HY, Ding ZQ. Implantation of 125I radioactive seeds via c-TBNA combined with chemotherapy in an advanced non-small-cell lung carcinoma patient. BMC Pulm Med. 2019;19(1):205. https://doi.org/10.1186/s12890-019-0974-8. BioMed Central Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao J, et al. Efficacy and safety of CT-guided 125I brachytherapy in elderly patients with non-small cell lung cancer. Oncol Lett. 2020;20(1):183–92. https://doi.org/10.3892/ol.2020.11550. Spandidos Publications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, et al. A novel tracheobronchial stent loaded with 125I seeds in patients with malignant airway obstruction compared to a conventional stent: a prospective randomized controlled study. EBioMedicine. 2018;33:269–75. https://doi.org/10.1016/j.ebiom.2018.06.006. Elsevier B.V.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang B, et al. Efficacy and safety of thermal ablation of lung malignancies: a network meta-analysis. Ann Thorac Med. 2018;13(4):243–50. https://doi.org/10.4103/atm.ATM_392_17. Wolters Kluwer Medknow Publications.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Prud’homme C, et al. Image-guided lung metastasis ablation: a literature review. Int J Hyperthermia. 2019;36:37–45. https://doi.org/10.1080/02656736.2019.1647358. Taylor and Francis Ltd.

    Article  PubMed  Google Scholar 

  60. Aufranc V, et al. Percutaneous thermal ablation of primary and secondary lung tumors: comparison between microwave and radiofrequency ablation. Diagn Interv Imaging. 2019;100(12):781–91. https://doi.org/10.1016/j.diii.2019.07.008. Elsevier Masson SAS.

    Article  CAS  PubMed  Google Scholar 

  61. Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38:135–43. https://doi.org/10.1067/j.cpradiol.2007.10.001. NIH Public Access.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Curley SA, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg. 1999;230(1):1–8. https://doi.org/10.1097/00000658-199907000-00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Louis Hinshaw J, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation-what should you use and why? Radiographics. 2014;34(5):1344–62. https://doi.org/10.1148/rg.345140054. Radiological Society of North America Inc.

    Article  PubMed  Google Scholar 

  64. Palussière J, Catena V, Buy X. Percutaneous thermal ablation of lung tumors—radiofrequency, microwave and cryotherapy: where are we going? Diagn Interv Imaging. 2017;98:619–25. https://doi.org/10.1016/j.diii.2017.07.003. Elsevier Masson SAS.

    Article  PubMed  Google Scholar 

  65. Xiong L, Dupuy DE. Lung ablation: whats new? Journal of Thoracic Imaging. 2016;31:228–37. https://doi.org/10.1097/RTI.0000000000000212. Lippincott Williams and Wilkins.

    Article  PubMed  Google Scholar 

  66. Goldberg SN, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities-part I. J Vasc Interv Radiol. 2001;12:1021–32. https://doi.org/10.1016/S1051-0443(07)61587-5.

    Article  Google Scholar 

  67. Nemcek AA. Complications of radiofrequency ablation of neoplasms. Semin Interv Radiol. 2006;23:177–87. https://doi.org/10.1055/s-2006-941448. Thieme Medical Publishers.

    Article  Google Scholar 

  68. Belfiore G, et al. Patients’ survival in lung malignancies treated by microwave ablation: our experience on 56 patients. Eur J Radiol. 2013;82(1):177–81. https://doi.org/10.1016/j.ejrad.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  69. Dupuy DE. Science to practice: microwave ablation compared with radiofrequency ablation in lung tissue—is microwave not just for popcorn anymore? Radiology. 2009;251:617–8. https://doi.org/10.1148/radiol.2513090129.

    Article  PubMed  Google Scholar 

  70. Iezzi R, Cioni R, et al. Standardizing percutaneous microwave ablation in the treatment of lung tumors: a prospective multicenter trial (MALT study). Eur Radiol. 2020a;31(4):2173–82. https://doi.org/10.1007/s00330-020-07299-2. Springer Science and Business Media Deutschland GmbH.

    Article  PubMed  Google Scholar 

  71. Palussiere J, et al. Percutaneous lung thermal ablation of non-surgical clinical N0 non-small cell lung cancer: results of eight years’ experience in 87 patients from two centers. Cardiovasc Interv Radiol. 2015;38(1):160–6. https://doi.org/10.1007/s00270-014-0999-6. Springer New York LLC.

    Article  Google Scholar 

  72. Tsakok MT, et al. Local control, safety, and survival following image-guided percutaneous microwave thermal ablation in primary lung malignancy. Clin Radiol. 2019;74(1):80.e19–26. https://doi.org/10.1016/j.crad.2018.09.014. W.B. Saunders Ltd.

    Article  CAS  Google Scholar 

  73. Vogl TJ, et al. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology. 2011;261(2):643–51. https://doi.org/10.1148/radiol.11101643.

    Article  PubMed  Google Scholar 

  74. Yuan Z, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol. 2019;16(3):302–14. https://doi.org/10.1016/j.jacr.2018.10.012. Elsevier B.V.

    Article  PubMed  Google Scholar 

  75. Aarts BM, et al. Cryoablation and immunotherapy: an overview of evidence on its synergy. Insights Imaging. 2019. Springer. https://doi.org/10.1186/s13244-019-0727-5.

  76. Duan H, et al. Cryoablation for advanced non-small cell lung cancer: a protocol for a systematic review. BMJ Open. 2020. BMJ Publishing Group. https://doi.org/10.1136/bmjopen-2019-033460.

  77. Sun M, et al. A multicenter randomized controlled trial to assess the efficacy of cancer green therapy in treatment of stage IIIb/IV non-small cell lung cancer. Medicine. 2020;99(33):e21626. https://doi.org/10.1097/MD.0000000000021626. NLM (Medline).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Callstrom MR, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J Thorac Oncol. 2020;15:1200–9. https://doi.org/10.1016/j.jtho.2020.02.022.

    Article  PubMed  Google Scholar 

  79. Das SK, et al. Comparing cryoablation and microwave ablation for the treatment of patients with stage IIIB/IV non-small cell lung cancer. Oncol Lett. 2020;19(1):1031–41. https://doi.org/10.3892/ol.2019.11149. Spandidos Publications.

    Article  CAS  PubMed  Google Scholar 

  80. Liu BD, et al. Expert consensus on image-guided radiofrequency ablation of pulmonary tumors: 2018 edition. Thorac Cancer. 2018;9(9):1194–208. https://doi.org/10.1111/1759-7714.12817. Wiley.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Freitag L, et al. Sequential photodynamic therapy (PDT) and high dose brachytherapy for endobronchial tumour control in patients with limited bronchogenic carcinoma. Thorax. 2004;59:790–3. https://doi.org/10.1136/thx.2003.013599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ornadel D, et al. Defining the roles of high dose rate endobronchial brachytherapy and laser resection for recurrent bronchial malignancy. Lung Cancer. 1997;16(2–3):203–13. https://doi.org/10.1016/S0169-5002(96)00630-7. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  83. Patelli M, Trisolini R. La terapia endoscopica palliative. In: Pneumologia interventistica. Milan: Springer; 2008. p. 425–33. https://doi.org/10.1007/978-88-470-0556-3_41.

    Chapter  Google Scholar 

  84. Wang H, et al. Cryosurgery combined with radioactive seeds and release-controlled chemical drugs implantation for the treatment of lung carcinoma. Zhongguo Fei Ai Za Zhi. 2009;12(5):408–11. https://doi.org/10.3779/j.issn.1009-3419.2009.05.006.

    Article  CAS  PubMed  Google Scholar 

  85. Zhou H, et al. Cryosurgery combined with Iodine-125 seed implantation in the treatment of unresectable lung cancer. Chin J Lung Cancer. 2008;11(6):780–3. https://doi.org/10.3779/j.issn.1009-3419.2008.06.06.

    Article  Google Scholar 

  86. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492. Wiley.

    Article  PubMed  Google Scholar 

  87. Bayman E, et al. Patterns of failure after intensity-modulated radiotherapy in head and neck squamous cell carcinoma using compartmental clinical target volume delineation. Clin Oncol. 2014;26(10):636–42. https://doi.org/10.1016/j.clon.2014.05.001. Elsevier Ltd.

    Article  CAS  Google Scholar 

  88. Due AK, et al. Recurrences after intensity modulated radiotherapy for head and neck squamous cell carcinoma more likely to originate from regions with high baseline [18F]-FDG uptake. Radiother Oncol. 2014;111(3):360–5. https://doi.org/10.1016/j.radonc.2014.06.001. Elsevier Ireland Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bussu F, et al. HDR interventional radiotherapy (brachytherapy) in the treatment of primary and recurrent head and neck malignancies. Head Neck. 2019;41(6):1667–75. https://doi.org/10.1002/hed.25646. Wiley.

    Article  PubMed  Google Scholar 

  90. Tagliaferri L, et al. Endoscopy-guided brachytherapy for sinonasal and nasopharyngeal recurrences. Brachytherapy. 2015;14(3):419–25. https://doi.org/10.1016/j.brachy.2014.11.012. Elsevier Inc.

    Article  PubMed  Google Scholar 

  91. Tagliaferri L, et al. Perioperative HDR brachytherapy for reirradiation in head and neck recurrences: single-institution experience and systematic review. Tumori. 2017;103:516–24. https://doi.org/10.5301/tj.5000614. Wichtig Publishing Srl.

    Article  PubMed  Google Scholar 

  92. Bhalavat R, et al. High-dose-rate interstitial brachytherapy in recurrent head and neck cancer: an effective salvage option. J Contemp Brachytherapy. 2018;10(5):425–30. https://doi.org/10.5114/jcb.2018.78995. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kovács G, et al. GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update—improvement by cross sectional imaging based treatment planning and stepping source technology. Radiother Oncol. 2017b;122(2):248–54. https://doi.org/10.1016/j.radonc.2016.10.008. Elsevier Ireland Ltd.

    Article  PubMed  Google Scholar 

  94. Narayana A, et al. High-dose-rate interstitial brachytherapy in recurrent and previously irradiated head and neck cancers-preliminary results. Brachytherapy. 2007;6(2):157–63. https://doi.org/10.1016/j.brachy.2006.12.001.

    Article  PubMed  Google Scholar 

  95. Puthawala A, et al. Interstitial low-dose-rate brachytherapy as a salvage treatment for recurrent head-and-neck cancers: long-term results. Int J Radiat Oncol Biol Phys. 2001;51(2):354–62. https://doi.org/10.1016/S0360-3016(01)01637-6. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  96. Rodin J, et al. A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery. J Contemp Brachytherapy. 2018;10(5):454–62. https://doi.org/10.5114/jcb.2018.79399. Termedia Publishing House Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  97. García-Consuegra A, et al. Dose volume histogram constraints in patients with head and neck cancer treated with surgery and adjuvant HDR brachytherapy: a proposal of the head and neck and skin GEC ESTRO Working group. Radiother Oncol. 2021;154:128–34. https://doi.org/10.1016/j.radonc.2020.09.015. Elsevier Ireland Ltd.

    Article  CAS  PubMed  Google Scholar 

  98. Goldstein DP, et al. Outcomes following reirradiation of patients with heap and neck cancer. Head Neck. 2008;30(6):765–70. https://doi.org/10.1002/hed.20786.

    Article  PubMed  Google Scholar 

  99. Sulman EP, et al. IMRT reirradiation of head and neck cancer-disease control and morbidity outcomes. Int J Radiat Oncol Biol Phys. 2009;73(2):399–409. https://doi.org/10.1016/j.ijrobp.2008.04.021.

    Article  PubMed  Google Scholar 

  100. Brook AL, et al. CT-guided radiofrequency ablation in the palliative treatment of recurrent advanced head and neck malignancies. J Vasc Interv Radiol. 2008;19(5):725–35. https://doi.org/10.1016/j.jvir.2007.12.439.

    Article  PubMed  Google Scholar 

  101. Wang L, et al. Ultrasonography-guided percutaneous radiofrequency ablation for cervical lymph node metastasis from thyroid carcinoma. J Cancer Res Ther. 2014;10:C144–9. https://doi.org/10.4103/0973-1482.145844. Medknow Publications.

    Article  Google Scholar 

  102. Owen RP, et al. Techniques for radiofrequency ablation of head and neck tumors. Arch Otolaryngol Head Neck Surg. 2004;130(1):52–6. https://doi.org/10.1001/archotol.130.1.52.

    Article  PubMed  Google Scholar 

  103. Owen RP, et al. Radiofrequency ablation of advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2011;137(5):493–8. https://doi.org/10.1001/archoto.2011.62.

    Article  PubMed  Google Scholar 

  104. Ahmed M, et al. Principles of and advances in percutaneous ablation. Radiology. 2011;258:351–69. https://doi.org/10.1148/radiol.10081634.

    Article  Google Scholar 

  105. Belfiore MP, et al. Preliminary results in unresectable head and neck cancer treated by radiofrequency and microwave ablation: feasibility, efficacy, and safety. J Vasc Interv Radiol. 2015;26(8):1189–96. https://doi.org/10.1016/j.jvir.2015.05.021. Elsevier Inc.

    Article  PubMed  Google Scholar 

  106. Guenette JP, et al. Percutaneous image-guided cryoablation of head and neck tumors for local control, preservation of functional status, and pain relief. Am J Roentgenol. 2017;208(2):453–8. https://doi.org/10.2214/AJR.16.16446. American Roentgen Ray Society.

    Article  Google Scholar 

  107. Amin M, Wilson JA. Radical neck dissection: a 19-year experience. J Laryngol Otol. 1989;103(8):760–4. https://doi.org/10.1017/S002221510011000X.

    Article  PubMed  Google Scholar 

  108. Chen YF, et al. Transarterial embolization for control of bleeding in patients with head and neck cancer. Otolaryngol Head Neck Surg. 2010;142(1):90–4. https://doi.org/10.1016/j.otohns.2009.09.031.

    Article  PubMed  Google Scholar 

  109. Christison-Lagay E. Complications in head and neck surgery. Semin Pediatr Surg. 2016;25(6):338–46. https://doi.org/10.1053/j.sempedsurg.2016.10.007. W.B. Saunders.

    Article  PubMed  Google Scholar 

  110. Mccall JW, Whitaker CW, Hendershot EL. Rupture of the common carotid artery following radical neck surgery in radiated cases. AMA Arch Otolaryngol. 1959;69(4):431–4. https://doi.org/10.1001/archotol.1959.00730030441009. American Medical Association.

    Article  CAS  PubMed  Google Scholar 

  111. McCready RA, et al. Radiation-induced arterial injuries. Surgery. 1983;93(2):306–12. https://doi.org/10.5555/URI:PII:0039606083903501. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  112. Minion DJ, et al. Pseudoaneurysm of the external carotid artery following radical neck dissection and irradiation: a case report and review of the literature. Vascular. 1994;2(5):607–11. https://doi.org/10.1177/096721099400200513. Sage Publications UK: London, England.

    Article  CAS  Google Scholar 

  113. Gemmete JJ, et al. Preliminary experience with the percutaneous embolization of juvenile angiofibromas using only ethylene-vinyl alcohol copolymer (Onyx) for preoperative devascularization prior to surgical resection. AJNR Am J Neuroradiol. 2012;33(9):1669–75. https://doi.org/10.3174/ajnr.A3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim HS, et al. Life-threatening common carotid artery blowout: rescue treatment with a newly designed self-expanding covered nitinol stent. Br J Radiol. 2006;79(939):226–31. https://doi.org/10.1259/bjr/66917189.

    Article  CAS  PubMed  Google Scholar 

  115. Lesley WS, et al. Preliminary experience with endovascular reconstruction for the management of Carotid Blowout syndrome. AJNR Am J Neuroradiol. 2003; 24: 975-81. PMID: 12748106; PMCID: PMC7975806.

    Google Scholar 

  116. Morrissey DD, et al. Endovascular management of hemorrhage in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg. 1997;123(1):15–9. https://doi.org/10.1001/archotol.1997.01900010017002. American Medical Association.

    Article  CAS  PubMed  Google Scholar 

  117. Patsalides A, et al. Endovascular treatment of carotid blowout syndrome: who and how to treat. J Neurointerv Surg. 2010;2(1):87–93. https://doi.org/10.1136/jnis.2009.001131.

    Article  CAS  PubMed  Google Scholar 

  118. Sesterhenn AM, et al. Acute haemorrhage in patients with advanced head and neck cancer: value of endovascular therapy as palliative treatment option. J Laryngol Otol. 2006;120:117–24. https://doi.org/10.1017/S0022215105003178.

    Article  PubMed  Google Scholar 

  119. Shah H, et al. Acute life-threatening hemorrhage in patients with head and neck cancer presenting with carotid blowout syndrome: follow-up results after initial hemostasis with covered-stent placement. AJNR Am J Neuroradiol. 2011;32(4):743–7. https://doi.org/10.3174/ajnr.A2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rasch CRN, et al. Intra-arterial versus intravenous chemoradiation for advanced head and neck cancer: results of a randomized phase 3 trial. Cancer. 2010;116(9):2159–65. https://doi.org/10.1002/cncr.24916.

    Article  CAS  PubMed  Google Scholar 

  121. Robbins KT, et al. A targeted supradose cisplatin chemoradiation protocol for advanced head and neck cancer. Am J Surg. 1994;168(5):419–22. https://doi.org/10.1016/S0002-9610(05)80089-3.

    Article  CAS  PubMed  Google Scholar 

  122. Robbins KT, et al. Efficacy of targeted supradose cisplatin and concomitant radiation therapy for advanced head and neck cancer: the Memphis experience. Int J Radiat Oncol Biol Phys. 1997;38(2):263–71. https://doi.org/10.1016/S0360-3016(97)00092-8.

    Article  CAS  PubMed  Google Scholar 

  123. Dar SA, et al. CT-guided cryoablation for palliation of secondary trigeminal neuralgia from head and neck malignancy. J Neurointerv Surg. 2013;5(3):258–63. https://doi.org/10.1136/neurintsurg-2012-010265.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D’Aviero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tagliaferri, L., D’Aviero, A., Posa, A., Iezzi, R. (2021). Interventional Image-Guided HDR Brachytherapy as a Salvage Treatment: Exclusive or in Combination with Other Local Therapies. In: Mohnike, K., Ricke, J., Corradini, S. (eds) Manual on Image-Guided Brachytherapy of Inner Organs. Springer, Cham. https://doi.org/10.1007/978-3-030-78079-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78079-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78078-4

  • Online ISBN: 978-3-030-78079-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics