Skip to main content

des-ist: A Simulation Framework to Streamline Event-Based In Silico Trials

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

To popularise in silico trials for development of new medical devices, drugs, or treatment procedures, we present the modelling framework des-ist (Discrete Event Simulation framework for In Silico Trials). This framework supports discrete event-based simulations. Here, events are collected in an acyclic, directed graph, where each node corresponds to a component of the overall in silico trial. A simple API and data layout are proposed to easily couple numerous simulations by means of containerised environments, i.e. Docker and Singularity. An example in silico trial is highlighted studying treatment of acute ischemic stroke, as considered in the INSIST project.

The proposed framework enables straightforward coupling of the discrete models, reproducible outcomes by containerisation, and easy parallel execution by GNU Parallel. Furthermore, des-ist supports the user in creating, running, and analysing large numbers of virtual cohorts, automating repetitive user interactions. In future work, we aim to provide a tight integration with validation, verication and uncertainty quantication analyses, to enable sensitivity analysis of individual components of in silico trials and improve trust in the computational outcome to successfully augment classical medical trials and thereby enable faster development of treatment procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Non-Python code is included using Python’s subprocess library https://docs.python.org/3.10/library/subprocess.html.

References

  1. Brott, T., et al.: Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7), 864–870 (1989). https://doi.org/10.1161/01.str.20.7.864

  2. Dickson, M., Gagnon, J.P.: Key factors in the rising cost of new drug discovery and development. Nature Rev. Drug Discov. 3(5), 417–429 (2004). https://doi.org/10.1038/nrd1382

  3. Fogel, D.B.: Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 11, 156–164 (2018). https://doi.org/10.1016/j.conctc.2018.08.001

  4. Groen, D., Zasada, S.J., Coveney, P.V.: Survey of multiscale and multiphysics applications and communities. Comput. Sci. Eng. 16(2), 34–43 (2014). https://doi.org/10.1109/mcse.2013.47

  5. Gupta, A., Milojicic, D.: Evaluation of HPC applications on cloud. In: 2011 Sixth Open Cirrus Summit, IEEE (October 2011). https://doi.org/10.1109/ocs.2011.10

  6. Hoekstra, A., Chopard, B., Coveney, P.: Multiscale modelling and simulation: a position paper. Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 372(2021), 20130377 (2014). https://doi.org/10.1098/rsta.2013.0377

  7. Józsa, T.I., Padmos, R.M., Samuels, N., El-Bouri, W.K., Hoekstra, A.G., Payne, S.J.: A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke. Interface Focus 11(1), 20190127 (2020). https://doi.org/10.1098/rsfs.2019.0127

  8. Konduri, P.R., Marquering, H.A., van Bavel, E.E., Hoekstra, A., Majoie, C.B.L.M.: In-silico trials for treatment of acute ischemic stroke. Front. Neurol. 11, 1062 (2020). https://doi.org/10.3389/fneur.2020.558125

  9. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459

  10. Luraghi, G., et al.: Applicability assessment of a stent-retriever thrombectomy finite-element model. Interface Focus 11(1), 20190123 (2021). https://doi.org/10.1098/rsfs.2019.0123

  11. Merkel, D.: Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)

    Google Scholar 

  12. Padmos, R.M., Józsa, T.I., El-Bouri, W.K., Konduri, P.R., Payne, S.J., Hoekstra, A.G.: Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke. Interface Focus 11(1), 20190125 (2020). https://doi.org/10.1098/rsfs.2019.0125

  13. Prašnikar, J., Škerlj, T.: New product development process and time-to-market in the generic pharmaceutical industry. Ind. Market. Manage. 35(6), 690–702 (2006). https://doi.org/10.1016/j.indmarman.2005.06.001

  14. van Rossum, G.: Glue it all together with python (1998). https://www.python.org/doc/essays/omg-darpa-mcc-position/

  15. Shibeko, A.M., Chopard, B., Hoekstra, A.G., Panteleev, M.A.: Redistribution of tpa fluxes in the presence of pai-1 regulates spatial thrombolysis. Biophys. J. 119(3), 638–651 (2020). https://doi.org/10.1016/j.bpj.2020.06.020

  16. Sloot, P.M., Hoekstra, A.G.: Multi-scale modelling in computational biomedicine. Briefings Bioinform. 11(1), 142–152 (2009). https://doi.org/10.1093/bib/bbp038

  17. Tange, O.: Gnu parallel - the command-line power tool.; login: The USENIX Magazine 36(1), 42–47 (2011). https://doi.org/10.5281/zenodo.16303

  18. Viceconti, M., Henney, A., Morley-Fletcher, E.: In silico clinical trials: how computer simulation will transform the biomedical industry. Int. J. Clin. Trials 3(2), 37–46 (2016). https://www.ijclinicaltrials.com/index.php/ijct/article/view/105

  19. Viceconti, M., Hunter, P.: The virtual physiological human: Ten years after. Ann. Rev. Biomed. Eng. 18(1), 103–123 (2016). https://doi.org/10.1146/annurev-bioeng-110915-114742

  20. Viceconti, M., Juarez, M.A., Curreli, C., Pennisi, M., Russo, G., Pappalardo, F.: Credibility of in silico trial technologies—a theoretical framing. IEEE J. Biomed. Health Inf. 24(1), 4–13 (2020). https://doi.org/10.1109/jbhi.2019.2949888

  21. Wouters, O.J., McKee, M., Luyten, J.: Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323(9), 844 (2020). https://doi.org/10.1001/jama.2020.1166

  22. Wright, D.W., et al.: Building confidence in simulation: Applications of easyvvuq. Adv. Theor. Simul. 3(8), 1900246 (2020). https://doi.org/10.1002/adts.201900246

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max van der Kolk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van der Kolk, M., Miller, C., Padmos, R., Azizi, V., Hoekstra, A. (2021). des-ist: A Simulation Framework to Streamline Event-Based In Silico Trials. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics