Skip to main content

On the Power of Multiple Anonymous Messages: Frequency Estimation and Selection in the Shuffle Model of Differential Privacy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12698))

Abstract

It is well-known that general secure multi-party computation can in principle be applied to implement differentially private mechanisms over distributed data with utility matching the curator (a.k.a. central) model. In this paper we study the power of protocols running on top of a much weaker primitive: A non-interactive anonymous channel, known as the shuffle model in the differential privacy literature. Such protocols are implementable in a scalable way using known cryptographic methods and are known to enable non-interactive, differentially private protocols with error much smaller than what is possible in the local model. We study fundamental counting problems in the shuffle model and obtain tight, up to polylogarithmic factors, bounds on the error and communication in several settings.

For the classic problem of frequency estimation for n users and a domain of size B, we obtain:

  • A nearly tight lower bound of \(\tilde{\varOmega }( \min (\root 4 \of {n}, \sqrt{B}))\) on the \(\ell _\infty \) error in the single-message shuffle model. This implies that the protocols obtained from the amplification via shuffling work of Erlingsson et al. (SODA 2019) and Balle et al. (Crypto 2019) are nearly optimal for single-message protocols.

  • Protocols in the multi-message shuffle model with \(\mathrm {poly}(\log {B}, \log {n})\) bits of communication per user and \(\ell _\infty \) error at most \(\mathrm {poly}(\log B, \log n)\), which provide an exponential improvement on the error compared to what is possible with single-message algorithms. This implies protocols with similar error and communication guarantees for several well-studied problems such as heavy hitters, d-dimensional range counting, M-estimation of the median and quantiles, and more generally sparse non-adaptive statistical query algorithms.

For the selection problem on a domain of size \(B\), we prove:

  • A nearly tight lower bound of \(\varOmega (B)\) on the number of users in the single-message shuffle model. This significantly improves on the \(\varOmega (B^{1/17})\) lower bound obtained by Cheu et al. (Eurocrypt 2019).

A key ingredient in our lower bound proofs is a lower bound on the error of locally-private frequency estimation in the low-privacy (a.k.a. high \(\varepsilon \)) regime. For this we develop new tools to improve the results of Duchi et al. (FOCS 2013; JASA 2018) and Bassily & Smith (STOC 2015), whose techniques only gave tight bounds in the high-privacy setting.

N. Golowich—This work was done while interning at Google Research. Supported at MIT by a Fannie & John Hertz Foundation Fellowship and an NSF Graduate Fellowship.

R. Pagh—This work was initiated while visiting Google Research. Supported by VILLUM Foundation grant 16582.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Most of the large-scale deployments of local DP in practice (e.g., [5, 55]) have been variants of frequency estimation protocols.

  2. 2.

    The analyzers for both protocols in Theorem 2 have pre-processing time \(\tilde{O}(n)\) on the output of the shuffler. In the regime \(B\gg n\) (which is often of interest), this running time precludes them from computing all frequencies up-front.

  3. 3.

    Sometimes also referred to as variable selection.

  4. 4.

    Note that we use the subscripts in \(\varepsilon _L\) and \(\delta _L\) to distinguish the privacy parameters of the local model from the \(\varepsilon \) and \(\delta \) parameters (without a subscript) of the shuffle model.

  5. 5.

    As we discuss in Remark 1, generic reductions [20, 29] showing that one can efficiently simulate an approximately differentially private protocol (i.e., with \(\delta _L > 0\)) with a pure differentially private protocol (i.e., with \(\delta _L = 0\)) are insufficient to obtain tight lower bounds.

  6. 6.

    If we were to ignore the assumption of \(\delta _L = 0 \) and try to use this bound for \(\varepsilon _L = \ln (n) + O(1)\) to attempt to derive a lower bound in the single-message shuffle model in the context of Theorem 1, we would get a lower bound of \(\varOmega (\sqrt{\log (B)/n})\) on the \(\ell _\infty \) error, which for \(n \gg \log B\) is (much) worse than even the lower bound of \(\varOmega (\min \{ \log B, \log n \})\) from the central model.

  7. 7.

    This bound is not stated explicitly in [42], though [42, Lemma 7] proves a similar result whose proof can readily be modified appropriately.

  8. 8.

    i.e., we will take \(\alpha n = \tilde{\varTheta }(n^{1/4})\), so \(\alpha = \tilde{\varTheta }(n^{-3/4})\).

  9. 9.

    For clarity of exposition in this overview, we refrain from quantifying the likelihoods in each of these cases; for more details on this, we refer the reader to Section B.3.

  10. 10.

    Note that we cannot use the earlier amplification by shuffling result of [54], since it is only stated for \(\varepsilon _L = O(1)\) whereas we need to amplify a much less private local protocol, having an \(\varepsilon _L\) close to \(\ln {n}\).

  11. 11.

    We formally define range queries as a special case of counting queries in Section F.

  12. 12.

    Although the single-message real summation protocol of Balle et al. [9] uses the B-ary randomized response, when combined with their lower bound on single-message protocols, it does not imply any lower bound on single-message frequency estimation protocols. The reason is that their upper bound doe not use the \(\ell _{\infty }\) error bound for the B-ary randomized response as a black box.

  13. 13.

    A basic primitive in these protocols is a “split-and-mix” procedure that goes back to the work of Ishai et al. [68].

References

  1. Acharya, J., Canonne, C., Freitag, C., Tyagi, H.: Test without trust: optimal locally private distribution testing. In: AISTATS, pp. 2067–2076 (2019)

    Google Scholar 

  2. Acharya, J., Sun, Z.: Communication complexity in locally private distribution estimation and heavy hitters. ICML 97, 51–60 (2019)

    Google Scholar 

  3. Acharya, J., Sun, Z., Zhang, H.: Hadamard response: estimating distributions privately, efficiently, and with little communication. In: AISTATS, pp. 1120–1129 (2019)

    Google Scholar 

  4. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: cpSGD: communication-efficient and differentially-private distributed SGD. In: Advances in Neural Information Processing Systems, pp. 7564–7575 (2018)

    Google Scholar 

  5. Apple Differential Privacy Team: Learning with privacy at scale. Apple Mach. Learn. J. (2017). https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf

  6. Balcer, V., Cheu, A.: Separating local & shuffled differential privacy via histograms. In: ITC, pp. 1:1–1:14 (2020)

    Google Scholar 

  7. Balle, B., Bell, J., Gascón, A., Nissim, K.: Differentially private summation with multi-message shuffling. CoRR arXiv:1906.09116 (2019)

  8. Balle, B., Bell, J., Gascón, A., Nissim, K.: Improved summation from shuffling. arXiv:1909.11225 (2019)

  9. Balle, B., Bell, J., Gascón, A., Nissim, K.: The privacy blanket of the shuffle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 638–667. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_22

    Chapter  Google Scholar 

  10. Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message shuffle model. arXiv:2002.00817 (2020)

  11. Bassily, R., Nissim, K., Stemmer, U., Thakurta, A.G.: Practical locally private heavy hitters. In: NIPS, pp. 2288–2296 (2017)

    Google Scholar 

  12. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: STOC, pp. 127–135 (2015)

    Google Scholar 

  13. Bassily, R., Smith, A.D., Thakurta, A.: Private empirical risk minimization: efficient algorithms and tight error bounds. In: FOCS, pp. 464–473 (2014)

    Google Scholar 

  14. Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization: pure vs. approximate differential privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 363–378. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6_26

    Chapter  MATH  Google Scholar 

  15. Bentley, J.L.: Decomposable searching problems. IPL 8(5), 244–251 (1979)

    Article  MathSciNet  Google Scholar 

  16. Bittau, A., et al.: Prochlo: strong privacy for analytics in the crowd. In: SOSP, pp. 441–459 (2017)

    Google Scholar 

  17. Blum, A., Dwork, C., Nissim, K., McSherry, F.: Practical privacy: the SuLQ framework. In: PODS, pp. 128–138 (2005)

    Google Scholar 

  18. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC, pp. 609–618 (2008)

    Google Scholar 

  19. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasmpytotic Theory of Independence. Clarendon Press, Oxford (2012)

    MATH  Google Scholar 

  20. Bun, M., Nelson, J., Stemmer, U.: Heavy hitters and the structure of local privacy. In: PODS, pp. 435–447 (2018)

    Google Scholar 

  21. Bun, M., Nissim, K., Stemmer, U., Vadhan, S.: Differentially private release and learning of threshold functions. In: FOCS, pp. 634–649 (2015)

    Google Scholar 

  22. Chan, T.H., Shi, E., Song, D.: Private and continual release of statistics. ACM Trans. Inf. Syst. Secur. 14(3), 26:1–26:24 (2011)

    Article  Google Scholar 

  23. Chan, T.H.H., Shi, E., Song, D.: Optimal lower bound for differentially private multi-part aggregation. In: European Symposium on Algorithms (2012)

    Google Scholar 

  24. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_59

    Chapter  Google Scholar 

  25. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: NIPS, pp. 289–296 (2008)

    Google Scholar 

  26. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. JMLR 12, 1069–1109 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Chaudhuri, K., Sarwate, A.D., Sinha, K.: A near-optimal algorithm for differentially-private principal components. JMLR 14(1), 2905–2943 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Chen, L., Ghazi, B., Kumar, R., Manurangsi, P.: On distributed differential privacy and counting distinct elements. arXiv:2009.09604 (2020)

  29. Cheu, A., Smith, A.D., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential privacy via mixnets. In: EUROCRYPT, pp. 375–403 (2019)

    Google Scholar 

  30. Cormode, G.: Sketch techniques for approximate query processing. In: Foundations and Trends in Databases. Now Publishers (2011)

    Google Scholar 

  31. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. VLDB 1(2), 1530–1541 (2008)

    Google Scholar 

  32. Cormode, G., Kulkarni, T., Srivastava, D.: Marginal release under local differential privacy. In: SIGMOD, pp. 131–146 (2018)

    Google Scholar 

  33. Cormode, G., Kulkarni, T., Srivastava, D.: Answering range queries under local differential privacy. In: Proceedings of International Conference on Management of Data (SIGMOD), pp. 1832–1834 (2019)

    Google Scholar 

  34. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-Min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

    Article  MathSciNet  Google Scholar 

  35. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. TODS 30(1), 249–278 (2005)

    Article  Google Scholar 

  36. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private spatial decompositions. In: ICDE, pp. 20–31 (2012). https://doi.org/10.1109/ICDE.2012.16

  37. Cormode, G., Yi, K.: Small Summaries for Big Data. Cambridge University Press, Cambridge (2020). http://cormode.org/ssbd

    Book  Google Scholar 

  38. Cover, T.A., Thomas, J.M.: Elements of Information Theory. Wiley, New York (1991)

    Book  Google Scholar 

  39. Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  40. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: NIPS, pp. 3571–3580 (2017)

    Google Scholar 

  41. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: FOCS, pp. 429–438 (2013)

    Google Scholar 

  42. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for locally private estimation. JASA 113(521), 182–201 (2018)

    Article  MathSciNet  Google Scholar 

  43. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  44. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  45. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC, pp. 371–380 (2009)

    Google Scholar 

  46. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  47. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724 (2010)

    Google Scholar 

  48. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N.: Pure differential privacy for rectangle queries via private partitions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 735–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_30

    Chapter  Google Scholar 

  49. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC, pp. 381–390 (2009)

    Google Scholar 

  50. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential Privacy. Now Publishers Inc., Delft (2014)

    MATH  Google Scholar 

  51. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Edmonds, A., Nikolov, A., Ullman, J.: The power of factorization methods in local and central differential privacy. In: Symposium on the Theory of Computing (2020)

    Google Scholar 

  53. Erlingsson, Ú., et al.: Encode, shuffle, analyze privacy revisited: formalizations and empirical evaluation. arXiv preprint arXiv:2001.03618 (2020)

  54. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: from local to central differential privacy via anonymity. In: SODA, pp. 2468–2479 (2019)

    Google Scholar 

  55. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: CCS, pp. 1054–1067 (2014)

    Google Scholar 

  56. Estan, C., Varghese, G.: New directions in traffic measurement and accounting: focusing on the elephants, ignoring the mice. TOCS 21(3), 270–313 (2003)

    Article  Google Scholar 

  57. Free Haven: Selected papers in anonymity. https://www.freehaven.net/anonbib/

  58. Ghazi, B., Golowich, N., Kumar, R., Manurangsi, P., Pagh, R., Velingker, A.: Pure differentially private summation from anonymous messages. In: Information Theoretic Cryptography (ITC) (2020)

    Google Scholar 

  59. Ghazi, B., Manurangsi, P., Pagh, R., Velingker, A.: Private aggregation from fewer anonymous messages. arXiv:1909.11073 (2019)

  60. Ghazi, B., Pagh, R., Velingker, A.: Scalable and differentially private distributed aggregation in the shuffled model. arXiv:1906.08320 (2019)

  61. Gilbert, A.C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Fast, small-space algorithms for approximate histogram maintenance. In: STOC, pp. 389–398 (2002)

    Google Scholar 

  62. Greenberg, A.: Apple’s “differential privacy” is about collecting your data - but not your data. Wired, 13 June 2016

    Google Scholar 

  63. Greenwald, M., Khanna, S., et al.: Space-efficient online computation of quantile summaries. ACM SIGMOD Rec. 30(2), 58–66 (2001)

    Article  Google Scholar 

  64. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. In: NIPS, pp. 2339–2347 (2012). http://dl.acm.org/citation.cfm?id=2999325.2999396

  65. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70 (2010)

    Google Scholar 

  66. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially private histograms through consistency. VLDB 3(1–2), 1021–1032 (2010). https://doi.org/10.14778/1920841.1920970

    Article  Google Scholar 

  67. Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 461–472. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_39

    Chapter  Google Scholar 

  68. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: FOCS, pp. 239–248 (2006)

    Google Scholar 

  69. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under local privacy. In: ICML, pp. 2436–2444 (2016)

    Google Scholar 

  70. Karnin, Z., Lang, K., Liberty, E.: Optimal quantile approximation in streams. In: FOCS, pp. 71–78 (2016)

    Google Scholar 

  71. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Rashkodnikova, S., Smith, A.: What can we learn privately? In: FOCS, pp. 531–540 (2008)

    Google Scholar 

  72. Kilian, J., Madeira, A., Strauss, M.J., Zheng, X.: Fast private norm estimation and heavy hitters. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 176–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_11

    Chapter  Google Scholar 

  73. Lei, J.: Differentially private \(m\)-estimators. In: NIPS, pp. 361–369 (2011)

    Google Scholar 

  74. Li, C., Hay, M., Rastogi, V., Milau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: PODS, pp. 123–134 (2010)

    Google Scholar 

  75. Li, C., Miklau, G.: An adaptive mechanism for accurate query answering under differential privacy. VLDB 5(6), 514–525 (2012)

    Google Scholar 

  76. Li, N., Li, T., Venkatasubramanian, S.: \(t\)-closeness: privacy beyond \(k\)-anonymity and \(l\)-diversity. In: ICDE, pp. 106–115 (2007)

    Google Scholar 

  77. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other quantiles in one pass and with limited memory. ACM SIGMOD Rec. 27(2), 426–435 (1998)

    Article  Google Scholar 

  78. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp. 94–103 (2007)

    Google Scholar 

  79. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2), 143–152 (1982)

    Article  MathSciNet  Google Scholar 

  80. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. TCS 12(3), 315–323 (1980)

    Article  MathSciNet  Google Scholar 

  81. Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via discrepancy. In: STOC, pp. 1285–1292 (2012)

    Google Scholar 

  82. Nguyen, T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J.: Collecting and analyzing data from smart device users with local differential privacy. arXiv:1606.05053 (2016)

  83. Nikolov, A., Talwar, K., Zhang, L.: On the geometry of differential privacy: the sparse and approximate cases. In: STOC, pp. 351–360 (2013)

    Google Scholar 

  84. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  85. Qardaji, W., Yang, W., Li, N.: Understanding hierarchical methods for differentially private histograms. VLDB 6(14), 1954–1965 (2013). https://doi.org/10.14778/2556549.2556576

    Article  Google Scholar 

  86. Roos, B.: Binomial approximation to the Poisson binomial distribution: the Krawtchouk expansion. Theory Prob. Appl. 45(2), 258–272 (2006)

    Article  MathSciNet  Google Scholar 

  87. Shankland, S.: How Google tricks itself to protect Chrome user privacy. CNET, October 2014

    Google Scholar 

  88. Smith, A.D.: Privacy-preserving statistical estimation with optimal convergence rates. In: STOC, pp. 813–822 (2011)

    Google Scholar 

  89. Steinke, T., Ullman, J.: Between pure and approximate differential privacy. J. Priv. Confid. 7(2), 3–22 (2016)

    Google Scholar 

  90. Steinke, T., Ullman, J.: Tight lower bounds for differentially private selection. In: FOCS, pp. 552–563 (2017)

    Google Scholar 

  91. Stemmer, U.: Locally private k-means clustering. In: Proceedings of the 2020 Symposium on Discrete Algorithms (2020)

    Google Scholar 

  92. Ullman, J.: Tight lower bounds for locally differentially private selection. arXiv:1802.02638 (2018)

  93. Vadhan, S.: The complexity of differential privacy. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 347–450. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_7

    Chapter  Google Scholar 

  94. Wagh, S., He, X., Machanavajjhala, A., Mittal, P.: DP-cryptography: marrying differential privacy and cryptography in emerging applications. CoRR abs/2004.08887 (2020). https://arxiv.org/abs/2004.08887, to appear in Communications of the ACM

  95. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for frequency estimation. In: USENIX Security, pp. 729–745 (2017)

    Google Scholar 

  96. Wang, T., Xu, M., Ding, B., Zhou, J., Li, N., Jha, S.: Practical and robust privacy amplification with multi-party differential privacy. arXiv:1908.11515 (2019)

  97. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. JASA 60(309), 63–69 (1965)

    Article  Google Scholar 

  98. Wasserman, L., Zhou, S.: A statistical framework for differential privacy. JASA 105(489), 375–389 (2010)

    Article  MathSciNet  Google Scholar 

  99. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. TKDE 23(8), 1200–1214 (2010)

    Google Scholar 

  100. Ye, M., Barg, A.: Optimal schemes for discrete distribution estimation under local differential privacy. In: ISIT, pp. 759–763 (2017)

    Google Scholar 

  101. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. Algorithmica 65(1), 206–223 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1108 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghazi, B., Golowich, N., Kumar, R., Pagh, R., Velingker, A. (2021). On the Power of Multiple Anonymous Messages: Frequency Estimation and Selection in the Shuffle Model of Differential Privacy. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12698. Springer, Cham. https://doi.org/10.1007/978-3-030-77883-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77883-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77882-8

  • Online ISBN: 978-3-030-77883-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics