Skip to main content

Spermiation: Insights from Studies on the Adjudin Model

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

Spermatogenesis is comprised of a series of cellular events that lead to the generation of haploid sperm. These events include self-renewal of spermatogonial stem cells (SSC), proliferation of spermatogonia by mitosis, differentiation of spermatogonia and spermatocytes, generation of haploid spermatids via meiosis I/II, and spermiogenesis. Spermiogenesis consists of a series of morphological events in which spermatids are being transported across the apical compartment of the seminiferous epithelium while maturing into spermatozoa, which include condensation of the genetic materials, biogenesis of acrosome, packaging of the mitocondria into the mid-piece, and elongation of the sperm tail. However, the biology of spermiation remains poorly understood. In this review, we provide in-depth analysis based on the use of bioinformatics tools and an animal model that mimics spermiation through treatment of adult rats with adjudin, a non-hormonal male contraceptive known to induce extensive germ cell exfoliation across the seminiferous epithelium, but nost notably elongating/elongated spermatids. These analyses have shed insightful information regaridng the biology of spermiation.

Studies conducted in the authors’ laboratory were supported in part by grants from the National Institutes of Health (HD0299990 to C.Y.C. Project 5; R01 HD056034 to C.Y.C.). Dr. Haiqi Chen's Current Address: The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52, 198–236.

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Mruk DD, Xiao X, Cheng CY 2017 Human spermatogenesis and its regulation. In: Male hypogonadism; 49-72.

    Google Scholar 

  3. Xiao, X., Mruk, D. D., Wong, C. K., & Cheng, C. Y. (2014). Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda), 29, 286–298.

    CAS  Google Scholar 

  4. O'Donnell, L. (2015). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis, 4, e979623.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O'Donnell, L., Nicholls, P. K., O'Bryan, M. K., McLachlan, R. I., & Stanton, P. G. (2011). Spermiation: The process of sperm release. Spermatogenesis, 1, 14–35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Russell, L. (1977). Observations on rat Sertoli ectoplasmic ('junctional') specializations in their association with germ cells of the rat testis. Tissue & Cell, 9, 475–498.

    Article  CAS  Google Scholar 

  7. Suarez-Quian, C. A., & Dym, M. (1988). Detection of microfilaments in rat Sertoli cell ectoplasmic specializations with NBD-phallicidin. International Journal of Andrology, 11, 301–312.

    Article  CAS  PubMed  Google Scholar 

  8. Kopera, I. A., Bilinska, B., Cheng, C. Y., & Mruk, D. D. (2010). Sertoli-germ cell junctions in the testis: A review of recent data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 1593–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, E. I., Mruk, D. D., & Cheng, C. Y. (2016). Regulation of microtubule (MT)-based cytoskeleton in the seminiferous epithelium during spermatogenesis. Seminars in Cell & Developmental Biology, 59, 35–45.

    Article  CAS  Google Scholar 

  10. Vogl, A. W., Pfeiffer, D. C., Mulholland, D., Kimel, G., & Guttman, J. (2000). Unique and multifunctional adhesion junctions in the testis: Ectoplasmic specializations. Archives of Histology and Cytology, 63, 1–15.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H., Mruk, D. D., Lui, W. Y., Wong, C. K. C., Lee, W. M., & Cheng, C. Y. (2017). Cell polarity and planar cell polarity (PCP) in spermatogenesis. Seminars in Cell & Developmental Biology.

    Google Scholar 

  12. Gao, Y., Xiao, X., Lui, W. Y., Lee, W. M., Mruk, D., & Cheng, C. Y. (2016). Cell polarity proteins and spermatogenesis. Seminars in Cell & Developmental Biology, 59, 62–70.

    Article  CAS  Google Scholar 

  13. Grima, J., Silvestrini, B., & Cheng, C. Y. (2001). Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biology of Reproduction, 64, 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  14. Mok, K. W., Mruk, D. D., Lie, P. P., Lui, W. Y., & Cheng, C. Y. (2011). Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction, 141, 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, C. Y., Mruk, D., Silvestrini, B., Bonanomi, M., Wong, C. H., Siu, M. K., Lee, N. P., Lui, W. Y., & Mo, M. Y. (2005). AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data. Contraception, 72, 251–261.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, C. Y., & Mruk, D. D. (2010). New frontiers in nonhormonal male contraception. Contraception, 82, 476–482.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang, E. I., Lee, W. M., & Cheng, C. Y. (2016). Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology, 157, 1644–1659.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, L., Tang, E. I., Chen, H., Lian, Q., Ge, R., Silvestrini, B., & Cheng, C. Y. (2017). Sperm release at Spermiation is regulated by changes in the Organization of Actin- and Microtubule-Based Cytoskeletons at the apical ectoplasmic specialization-a study using the Adjudin model. Endocrinology, 158, 4300–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gungor-Ordueri, N. E., Celik-Ozenci, C., & Cheng, C. Y. (2014). Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis. American Journal of Physiology. Endocrinology and Metabolism, 307, E738–E753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qian, X., Mruk, D. D., & Cheng, C. Y. (2013). Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis*. PLoS One, 8, e60656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qian, X., Mruk, D. D., Wong, E. W., Lie, P. P., & Cheng, C. Y. (2013). Palladin is a regulator of actin filament bundles at the ectoplasmic specialization in adult rat testes. Endocrinology, 154, 1907–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong, E. W., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2008). Par3/Par6 polarity complex coordinates apical ectoplasmic specialization and blood-testis barrier restructuring during spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 9657–9662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, M. W., Xiao, X., Mruk, D. D., Lam, Y. L., Lee, W. M., Lui, W. Y., Bonanomi, M., Silvestrini, B., & Cheng, C. Y. (2011). Actin-binding protein drebrin E is involved in junction dynamics during spermatogenesis. Spermatogenesis, 1, 123–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia, W., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2007). Unraveling the molecular targets pertinent to junction restructuring events during spermatogenesis using the Adjudin-induced germ cell depletion model. The Journal of Endocrinology, 192, 563–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong, E. W., Mruk, D. D., & Cheng, C. Y. (2008). Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochimica et Biophysica Acta, 1778, 692–708.

    Article  CAS  PubMed  Google Scholar 

  27. Young, J. S., Guttman, J. A., Vaid, K. S., Shahinian, H., & Vogl, A. W. (2009). Cortactin (CTTN), N-WASP (WASL), and clathrin (CLTC) are present at podosome-like tubulobulbar complexes in the rat testis. Biology of Reproduction, 80, 153–161.

    Article  CAS  PubMed  Google Scholar 

  28. Lie, P. P., Chan, A. Y., Mruk, D. D., Lee, W. M., & Cheng, C. Y. (2010). Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 11411–11416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su, W., Mruk, D. D., & Cheng, C. Y. (2013). Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Critical Reviews in Biochemistry and Molecular Biology, 48, 153–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian, X., Mruk, D. D., Cheng, Y. H., Tang, E. I., Han, D., Lee, W. M., Wong, E. W., & Cheng, C. Y. (2014). Actin binding proteins, spermatid transport and spermiation. Seminars in Cell & Developmental Biology, 30, 75–85.

    Article  CAS  Google Scholar 

  31. Sprando, R. L., & Russell, L. D. (1987). Comparative study of cytoplasmic elimination in spermatids of selected mammalian species. The American Journal of Anatomy, 178, 72–80.

    Article  CAS  PubMed  Google Scholar 

  32. Russell, L. D., Saxena, N. K., & Turner, T. T. (1989). Cytoskeletal involvement in spermiation and sperm transport. Tissue & Cell, 21, 361–379.

    Article  CAS  Google Scholar 

  33. Tang, E. I., Mok, K. W., Lee, W. M., & Cheng, C. Y. (2015). EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: An in vitro study. Endocrinology, 156, 680–693.

    Article  PubMed  Google Scholar 

  34. Chen, H., & Cheng, C. Y. (2016). Planar cell polarity (PCP) proteins and spermatogenesis. Seminars in Cell & Developmental Biology, 59, 99–109.

    Article  CAS  Google Scholar 

  35. Cheng, C. Y. (2015). Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model. Spermatogenesis, 4, e981485.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang, E. I., Xiao, X., Mruk, D. D., Qian, X. J., Mok, K. W., Jenardhanan, P., Lee, W. M., Mathur, P. P., & Cheng, C. Y. (2012). Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis, 2, 117–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Li MW, Cheng CY 2017 Drebrin and Spermatogenesis. In: Drebrin: Springer, Tokyo; 291-312.

    Google Scholar 

  38. Macara, I. G. (2004). Parsing the polarity code. Nature Reviews. Molecular Cell Biology, 5, 220–231.

    Article  CAS  PubMed  Google Scholar 

  39. Hurd, T. W., & Margolis, B. (2005). Pars and polarity: Taking control of Rac. Nature Cell Biology, 7, 205–207.

    Article  CAS  PubMed  Google Scholar 

  40. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., & Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 89, 297–308.

    Article  CAS  PubMed  Google Scholar 

  41. Chozinski, T. J., Halpern, A. R., Okawa, H., Kim, H. J., Tremel, G. J., Wong, R. O., & Vaughan, J. C. (2016). Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods, 13, 485–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Optical imaging. Expansion microscopy. Science, 347, 543–548.

    CAS  PubMed  Google Scholar 

  43. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C., & Nilsson, M. (2013). In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods, 10, 857–860.

    Article  CAS  PubMed  Google Scholar 

  45. Ramskold, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova, I., Loring, J. F., Laurent, L. C., Schroth, G. P., & Sandberg, R. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30, 777–782.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ 2015 ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr Protoc Mol biol 109:21 29 21-29.

    Google Scholar 

  47. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D., & Groop, L. C. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267–273.

    Article  CAS  PubMed  Google Scholar 

  48. Huang da W, Sherman BT, Lempicki RA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4:44–57.

    Google Scholar 

  49. Li, X. Y., Zhang, Y., Wang, X. X., Jin, C., Wang, Y. Q., Sun, T. C., Li, J., Tang, J. X., Batool, A., Deng, S. L., Chen, S. R., Cheng, C. Y., & Liu, Y. X. (2018). Regulation of blood-testis barrier assembly in vivo by germ cells. The FASEB Journal, 32, 1653–1664.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in tha authors’ laboratory were supported in part by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (R01 HD056034 to C.Y.C.; U54 HD029990 Project 5 to C.Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Jiang, Y., Mruk, D.D., Cheng, C.Y. (2021). Spermiation: Insights from Studies on the Adjudin Model. In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_12

Download citation

Publish with us

Policies and ethics