Skip to main content

Angular Momentum Conversion of the Light Beams in Three-Wave Mixing Processes in the Bulk and on the Surface of Isotropic Chiral Medium

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 125))

  • 477 Accesses

Abstract

The interconversion and total conservation of spin and orbital components of angular momentum of light is analytically considered in various nonlinear optical processes in isotropic chiral medium, such as sum frequency and second harmonic generation on the surface and in the bulk of the medium. The nonlocality of nonlinear response and the symmetry break in its near surface layer were taken into account, and for each process the selection rules for interacting photons were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Poynting, Proc. R. Soc. A 82, 560 (1909). https://doi.org/10.1098/rspa.1909.0060

    Article  ADS  Google Scholar 

  2. L. Allen, M. Beijersbergen, R. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  3. A.A. Kovalev, V.V. Kotlyar, A.P. Porfirev, Opt. Lett. 41(11), 2426 (2016). https://doi.org/10.1364/OL.41.002426

    Article  ADS  Google Scholar 

  4. M. Mestre, F. Diry, B. Lesegno, L. Pruvost, Eur. Phys. J. D 57, 87 (2010). https://doi.org/10.1140/epjd/e2010-00005-0

    Article  ADS  Google Scholar 

  5. K.A. Forbes, D.L. Andrews, Opt. Lett. 43(3), 435 (2018). https://doi.org/10.1364/OL.43.000435

    Article  ADS  Google Scholar 

  6. C.T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U.G. Poschinger, F. Schmidt-Kaler, Nat. Commun. 7, 12998 EP (2016). https://doi.org/10.1038/ncomms12998

  7. J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Phys. Rev. Lett. 95 (2005). https://doi.org/10.1103/PhysRevLett.95.260501

  8. R. Fickler, G. Campbell, B. Buchler, P.K. Lam, A. Zeilinger, Proc. Natl. Acad. Sci. USA 113(48), 13642 (2016). https://doi.org/10.1073/pnas.1616889113

    Article  ADS  Google Scholar 

  9. J.C. Garcia-Escartin, P. Chamorro-Posada, Phys. Rev. A 86 (2012). https://doi.org/10.1103/PhysRevA.86.032334

  10. Z.Y. Zhou, Y. Li, D.S. Ding, W. Zhang, S. Shi, B.S. Shi, Opt. Lett. 39(17), 5098 (2014). https://doi.org/10.1364/OL.39.005098

    Article  ADS  Google Scholar 

  11. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, Opt. Express 18(3), 2144 (2010). https://doi.org/10.1364/OE.18.002144

    Article  ADS  Google Scholar 

  12. D.K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, N. Capet, Radio Sci. 50, 1165 (2015). https://doi.org/10.1002/2015RS005772

    Article  ADS  Google Scholar 

  13. R.N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E.E. Mikhailov, J.P. Dowling, Phys. Rev. A 96 (2017). https://doi.org/10.1103/PhysRevA.96.013830

  14. D. Wei, J. Guo, X. Fang, D. Wei, R. Ni, P. Chen, X. Hu, Y. Zhang, W. Hu, Y.Q. Lu, S.N. Zhu, M. Xiao, Opt. Express 25(10), 11556 (2017). https://doi.org/10.1364/OE.25.011556

    Article  ADS  Google Scholar 

  15. Y. Wang, D. Wei, Y. Zhu, X. Huang, X. Fang, W. Zhong, Q. Wang, Y. Zhang, M. Xiao, Appl. Phys. Lett. 109(8) (2016). https://doi.org/10.1063/1.4961694

  16. D.N. Vavulin, A.A. Sukhorukov, Phys. Rev. A 96 (2017). https://doi.org/10.1103/PhysRevA.96.013812

  17. N. Kravets, E. Brasselet, Phys. Rev. A 97 (2018). https://doi.org/10.1103/PhysRevA.97.013834

  18. X.Y.Z. Xiong, A. Al-Jarro, L.J. Jiang, N.C. Panoiu, W.E.I. Sha, Phys. Rev. B 95 (2017). https://doi.org/10.1103/PhysRevB.95.165432

  19. G. Li, L. Wu, K.F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, Y. Luo, S. Zhang, Nano Lett. 17(12), 7974 (2017). https://doi.org/10.1021/acs.nanolett.7b04451. PMID: 29144753

    Article  ADS  Google Scholar 

  20. M. Beresna, P.G. Kazansky, Yu. Svirko, M. Barkauskas, R. Danielius, Appl. Phys. Lett. 95(12) (2009). https://doi.org/10.1063/1.3232235

  21. D.F. Gordon, B. Hafizi, A. Ting, Opt. Lett. 34(21), 3280 (2009). https://doi.org/10.1364/OL.34.003280

    Article  ADS  Google Scholar 

  22. I.A. Perezhogin, K.S. Grigoriev, N.N. Potravkin, E.B. Cherepetskaya, V.A. Makarov, Laser Phys. Lett. 14(8) (2017). https://doi.org/10.1088/1612-202x/aa77a3

  23. K.S. Grigoriev, I.A. Perezhogin, V.A. Makarov, Opt. Lett. 43(21), 5182 (2018). https://doi.org/10.1364/OL.43.005182

    Article  ADS  Google Scholar 

  24. K.S. Grigoriev, V.A. Diukov, V.A. Makarov, Opt. Lett. 45(2), 276 (2020). https://doi.org/10.1364/OL.45.000276

    Article  ADS  Google Scholar 

  25. J.A. Giordmaine, Phys. Rev. 138, A1599 (1965). https://doi.org/10.1103/PhysRev.138.A1599

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Volkov, N. Koroteev, V. Makarov, Quantum Electron. 25, 1183 (1995). https://doi.org/10.1070/QE1995v025n12ABEH000562

    Article  ADS  Google Scholar 

  27. A.A. Golubkov, V.A. Makarov, Phys. Uspekhi 38(3), 325 (1995)

    Google Scholar 

  28. K.S. Grigoriev, N.Y. Kuznetsov, E.B. Cherepetskaya, V.A. Makarov, Opt. Express 25(6), 6253 (2017). https://doi.org/10.1364/OE.25.006253

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Russian Foundation for Basic Research (Grant No. 19-02-00069) and Foundation for the Advancement of Theoretical Physics and Mathematics “Basis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Grigoriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grigoriev, K.S., Perezhogin, I.A., Diukov, V.A., Makarov, V.A. (2021). Angular Momentum Conversion of the Light Beams in Three-Wave Mixing Processes in the Bulk and on the Surface of Isotropic Chiral Medium. In: Yamanouchi, K., Manshina, A.A., Makarov, V.A. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-030-77646-6_7

Download citation

Publish with us

Policies and ethics