Skip to main content

Light-Mediated Regulation of Plant Hormone Metabolism

  • Chapter
  • First Online:
Hormones and Plant Response

Abstract

As sessile organisms, plants have evolved sophisticated endogenous mechanisms responsible for coordinating growth and developmental responses in a constantly changing environment. Light is one of the most critical exogenous factors impacting plant life from seedling emergence to leaf senescence. Acting as mediators between light perception and intracellular responses, four major photoreceptor families – phytochromes, cryptochromes, phototropins and ultraviolet-B receptors – have been extensively characterized in plants. Each photoreceptor triggers light signal transduction in the nucleus, and their combined action fine-tunes a myriad of cellular processes ultimately leading to changes in plant growth and development. Light-triggered signaling cascades frequently involve changes in plant hormone metabolism, transport and signaling, leading to a very complex framework of how plants transduce light perception into physiological alterations. Within the broad spectrum of light-hormone interaction possibilities, here we discuss some major mechanistic links between light perception and hormone metabolism in higher plants. Based on research conducted over the last decades, we highlight the primary regulatory links between photoreceptor-mediated light perception and the biosynthesis, conjugation and degradation of auxins, gibberellins, abscisic acid, cytokinins, ethylene and brassinosteroids. The fast-moving elucidation of the complicated regulatory networks linking light perception and plant hormone homeostasis suggests a bright future for the combined manipulation of light and hormonal signaling cascades as a means for improving crop architecture, performance, stress resistance, nutritional quality, among other traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves FRR, Lira BS, Pikart FC, Monteiro SS, Furlan CM, Purgatto E, Pascoal GB, da Silva Andrade SC, Demarco D, Rossi M, Freschi L (2020) Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato. Plant Biotechnol J 18:2027–2041

    Article  CAS  PubMed Central  Google Scholar 

  • An LZ, Zu XF, Tang HG, Zhang MX, Hou ZD, Liu YH, Zhao ZG, Feng HY, Xu SJ, Wang XL (2006) Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase gene expression in tomato (Lycopersicon esculentum Mill.) leaves under enhanced UV-B radiation. J Int Plant Biol 48:1190–1196

    Article  CAS  Google Scholar 

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Phys 123:93–100

    Article  CAS  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting factors. Annu Rev Plant Biol 59:281–311

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540

    Article  CAS  PubMed  Google Scholar 

  • Bianchetti RE, Cruz AB, Oliveira BS, Demarco D, Purgatto E, Peres LEP, Rossi M, Freschi L (2017) Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Sci Rep 7:7822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binkert M, Crocco CD, Ekundayo B, Lau K, Raffelberg S, Tilbrook K, Yin R, Chappuis R, Schalch T, Ulm R (2014) UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell 26:4200–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop GJ, Koncz C (2002) Brassinosteroids and plant steroid hormone signaling. Plant Cell 14:97–110

    Article  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB (1960) Photoperiodism in plants: growth is controlled by light and the measurement of night length through reversible reactions of a pigment. Science 132:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci U S A 45:703–708

    Article  Google Scholar 

  • Carvalho RF, Quecini V, Peres LEP (2010) Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: physiological and genetic studies. Plant Sci 178:258–264

    Article  CAS  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trend Cell Biol 21:664–671

    Article  CAS  Google Scholar 

  • Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Article  Google Scholar 

  • Cruz AB, Bianchetti RE, Alves FRR, Purgatto E, Peres LEP, Rossi M, Freschi L (2018) Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. Front Plant Sci 9:1370

    Article  PubMed  PubMed Central  Google Scholar 

  • De Wit M, Galvão VC, Fankhauser C (2016) Light-mediated hormonal regulation of plant growth and development. Annl Rev Plant Biol 67:513–537

    Article  CAS  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Ross JJ, Davies NW, Reid JB, Weller JL (2006) A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46:911–921

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvão VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 34:46–53

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Buchala AJ, Chua NH, Metraux JP (2002) Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95

    Article  CAS  PubMed  Google Scholar 

  • Goeschl JD, Pratt HK, Bonner BA (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42:1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463

    Article  CAS  PubMed  Google Scholar 

  • Harkey AF, Yoon GM, Seo DH, DeLong A, Muday GK (2019) Light modulates ethylene synthesis, signaling, and downstream transcriptional networks to control plant development. Front Plant Sci 10:1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwig T, Wang ZY (2015) The molecular circuit of steroid signalling in plants. In: Guilfoyle T, Hagen G (eds) Plant hormone signalling, vol 58. Portland Press Ltd., London, pp 71–82

    Google Scholar 

  • Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2017) UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol 27:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes S, Velanis CN, Jenkins GI, Franklin KA (2014) UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci U S A 111:11894–11899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Hersch M, Lorrain S, De Wit M, Trevisan M, Ljung K, Bergmann FC (2014) Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc Natl Acad Sci U S A 111:6515–6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoecker U, Toledo-Ortiz G, Bender J, Quail PH (2004) The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta 219:195–200

    Article  CAS  PubMed  Google Scholar 

  • Hoffman NE, Yang SF, McKeon T (1982) Identification and metabolism of 1-(malonylamino) cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plants. Biochem Biophys Res Comm 104:765–770

    Article  CAS  PubMed  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  CAS  PubMed  Google Scholar 

  • Houben M, Van de Poel B (2019) 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): the enzyme that makes the plant hormone Ethylene. Front Plant Sci 29:695

    Article  Google Scholar 

  • Hsieh HL, Okamoto H (2014) Molecular interaction of jasmonate and phytochrome a signalling. J Exp Bot 65:2847–2857

    Article  PubMed  Google Scholar 

  • Imaseki H, Pjon CJ, Furuya M (1971) Phytochrome action in Oryza sativa L. - red and far red reversible effect on the production of ethylene in excised coleoptiles. Plant Physiol 48:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annl Rev Plant Biol 60:407–431

    Article  CAS  Google Scholar 

  • Jia KP, Luo Q, He SB, Lu XD, Yang HQ (2014) Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol Plant 7:528–540

    Article  CAS  PubMed  Google Scholar 

  • Jiao XZ, Yip WK, Yang SF (1987) The effect of light and phytochrome on 1-aminocyclopropane-1-carboxylic acid metabolism in etiolated wheat seedling leaves. Plant Physiol 85:643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BG, Burg SP (1972) Involvement of ethylene in phytochrome-mediated carotenoid synthesis. Plant Physiol 49:631–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara H (2016) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80:34–42

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Jain K, Guruprasad KN (2005) Involvement of oxyradicals in promotion/inhibition of expansion growth in cucumber cotyledons. Ind J Exp Biol 43:910–915

    CAS  Google Scholar 

  • Katerova Z, Ivanov S, Prinsen E, Van Onckelen H, Alexieva V, Azmi A (2009) Low doses of ultraviolet-B or ultraviolet-C radiation affect phytohormones in young pea plants. Biol Plant 53:365–368

    Article  CAS  Google Scholar 

  • Kelley DR, Estelle M (2012) Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 160:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schäfer E, Quail PH (2007) The basic helix–loop–helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCHH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraepiel Y, Marree K, Sotta B, Caboche M, Miginiac E (1995) In vitro morphogenic characteristics of phytochrome mutants in Nicotiana plumbaginifolia are modified and correlated to high indole-3-acetic acid levels. Planta 197:142–146

    Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y (2016) Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res 129:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zuo Z, Liu H, Liu X, Lin C (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li X, Li K, Liu H, Lin C (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9:e1003861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo NKG, Bianchetti RE, Lira BS, Oliveira PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L (2016) Nitric oxide, ethylene, and auxin cross talk mediates greening and plastid development in deetiolating tomato seedlings. Plant Physiol 170:2278–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller A, Weiler EW (2000) Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta 211:855–863

    Article  PubMed  Google Scholar 

  • Müller-Moulé P, Nozue K, Pytlak ML, Palmer CM, Covington MF, Wallace AD, Harmer SL, Maloof JN (2016) YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. Peer J 4:e2574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci U S A 96:15316–15323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Chory J (2004) Bring it on: new insights into the mechanism of brassinosteroid action. J Exp Bot 55:265–270

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery JR, Ecker JR, Chory J (2016) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–245

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Zhou Q (2009) The endogenous hormones in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress. Biol Trace Elem Res 132:270–277

    Article  CAS  PubMed  Google Scholar 

  • Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Qamaruddin M, Tillberg E (1989) Rapid effects of red light on the isopentenyladenosine content in scots pine seeds. Plant Physiol 91:5–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado D, Trench B, Bianchetti R, Zuccarelli R, Rodrigues Alves FR, Purgatto E, Segal Floh EI, Silveira Nogueira FT, Freschi L, Rossi M (2019) Downregulation of PHYTOCHROME-INTERACTING FACTOR 4 influences plant development and fruit production. Plant Phys 181:1360–1370

    Article  CAS  Google Scholar 

  • Rodrigues MA, Bianchetti RE, Freschi L (2014) Shedding light on ethylene metabolism in higher plants. Front Plant Sci 5:665

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu KS, Hagely K, Neff MM (2012) Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photoreceptors in Arabidopsis thaliana. Genes Genom Genet 2:1585–1593

    CAS  Google Scholar 

  • Seo DH, Yoon GM (2019) Light-induced stabilization of ACS contributes to hypocotyl elongation during the dark-to-light transition in Arabidopsis seedlings. Plant J 98:898–911

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    Article  CAS  PubMed  Google Scholar 

  • Song L, Zhou XY, Li L, Xue LJ, Yang X, Xue HW (2009) Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant 2:755–772

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Qi L, Li Y, Chu K, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Zhai Q, Li C (2013) PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25:2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons G, Reid J (2003) Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul 22:3–14

    Article  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbridge A, Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 442:833–845

    Article  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B radiation. New Phytol 181:871–879

    Article  CAS  PubMed  Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 118:1517–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJ, Harren FJ, Van der Straeten D (2003) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F (2016) Hormone-controlled UV-B responses in plants. J Exp Bot 67:4469–4482

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Q, Nguyen P, Lin C (2015) Cryptochrome-mediated light responses in plants. Enzyme 35:167–189

    Article  CAS  Google Scholar 

  • Wang F, Zhang L, Chen X, Wu X, Xiang X, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhou Y (2019) SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol 179:749–760

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Hecht V, Schoor JKV, Davidson SE, Ross JJ (2009) Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21:800–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annl Rev Plant Biol 59:225–251

    Article  CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun TP (1998) Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, Seo M, Kamiya Y, Yamaguchi S (2007) Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol 48:555–561

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annl Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang SF, Ku HS, Pratt HK (1966) Ethylene production from methionine as mediated by flavin mononucleotide and light. Biochem Biophysl Res Comm 24:729–743

    Google Scholar 

  • Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028

    Google Scholar 

  • Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J (2015) Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J Exp Bot 66:4913–4931

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2000) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  Google Scholar 

  • Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J (2016) Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat Plant 2:16025

    Article  CAS  Google Scholar 

  • Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sao Paulo State Foundation for Research Support (FAPESP, Brazil) for financial support grants #2016/04924-0 and #2018/16389-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Freschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, F.R.R., Bianchetti, R.E., Freschi, L. (2021). Light-Mediated Regulation of Plant Hormone Metabolism. In: Gupta, D.K., Corpas, F.J. (eds) Hormones and Plant Response. Plant in Challenging Environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_5

Download citation

Publish with us

Policies and ethics