Skip to main content

Matrix Product State Representations for Machine Learning

  • Conference paper
  • First Online:
Artificial Intelligence in Intelligent Systems (CSOC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 229))

Included in the following conference series:

  • 901 Accesses

Abstract

Machine learning architectures provide a novel perspective on the study of quantum many body states. Restricted Boltzmann machines (RBM) tool is used to represent quantum many-body states in order to find connections to tensor network tools for studying quantum many-body physics, for a deeper understanding of the origin of entanglement entropy in quantum systems. Here, we seek the conditions for the optimal mapping of RBMs into Matrix Product States (MPS), with the aim to show that machine learning methods are a powerful tool for quantum state representations. We here showcase an efficient algorithm for translating RBMs into MPS, with a particular proof for Ising model. We also study the upper entropy bound condition and the entanglement properties of such mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  2. Howard, E.M.: Machine learning algorithms in Astronomy. In: Astronomical Data Analysis Software and Systems XXV, Astronomical Data Analysis Software and Systems ADASS XXV, vol. 512, p. 245 (2017)

    Google Scholar 

  3. Le Roux, N., Bengio, Y.: Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20, 1631–1649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355, 602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nomura, Y., Darmawan, A.S., Yamaji, Y., Imada, M.: Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017)

    Article  Google Scholar 

  6. Saito, H., Kato, M.: Machine learning technique to find quantum many-body ground states of bosons on a lattice. J. Phys. Soc. Jpn. 87, 014001 (2018)

    Article  Google Scholar 

  7. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, X., Duan, L.-M.: Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017)

    Article  Google Scholar 

  9. Vidal, G.: Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008)

    Article  Google Scholar 

  10. Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008)

    Article  Google Scholar 

  11. Howard, E.: Holographic renormalization with machine learning arXiv:1803.11056 [physics.gen-ph] (2018)

  12. Tagliacozzo, L., Evenbly, G., Vidal, G.: Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law. Phys. Rev. B 80, 235127 (2009)

    Article  Google Scholar 

  13. Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett 90, 227902 (2003)

    Article  Google Scholar 

  15. Carleo, G., Nomura, Y., Imada, M.: Constructing exact representations of quantum many-body systems with deep neural networks. arXiv:1802.09558 (2018)

  16. Chen, J., Cheng, S., Xie, H., Wang, L., Xiang, T.: Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018)

    Article  Google Scholar 

  17. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of the 19th International Conference on Computational Statistics, pp. 177–187 (2010)

    Google Scholar 

  18. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization arXiv:1412.6980 (2014)

  19. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. McCulloch, I.P.: Infinite size density matrix renormalization group, revisited, arXiv:0804.2509 (2008)

  21. Vidal, G.: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93(4), 040502 (2004)

    Article  Google Scholar 

  22. Jastrow, R.: Many-Body Problem with Strong Forces. Phys. Rev. 98(5), 1479–1484 (1955)

    Article  MATH  Google Scholar 

  23. Gutzwiller, M.C.: Correlation of electrons in a narrow \(s\) band. Phys. Rev. 137(6A), A1726–A1735 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y., Moore, J.E.: Neural network representation of tensor network and chiral states arXiv:1701.06246 (2017)

  25. Clark, S.R.: Unifying neural-network quantum states and correlator product states via tensor networks. J. Phys. A: Math. Theor. 51, 135301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. Siam Rev. 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017)

    Article  Google Scholar 

  28. Wang, L.: Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016)

    Article  Google Scholar 

  29. Deng, D.-L., Li, X., Sarma, S.D.: Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017)

    Google Scholar 

  30. Deng, D.-L., Li, X., Sarma, S.D.: Machine learning topological states. Phys. Rev. B 96, 195145 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howard, E., Chowdhury, I.S., Nagle, I. (2021). Matrix Product State Representations for Machine Learning. In: Silhavy, R. (eds) Artificial Intelligence in Intelligent Systems. CSOC 2021. Lecture Notes in Networks and Systems, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-77445-5_43

Download citation

Publish with us

Policies and ethics