Skip to main content

Comparison of Various Fractional Order Controllers on a Poorly Damped System

  • Conference paper
  • First Online:
  • 397 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 364))

Abstract

Poorly damped systems exhibit a high oscillatory behavior making them harder to control. The paper explores the possibilities of controlling a poorly damped system using different fractional order control approaches such as the Fractional Order Internal Model Control (FOIMC) and the Fractional Order Proportional Integral (FOPI) controllers. The case study is chosen to be a highly nonlinear experimental platform consisting of a vertical take-off and landing platform. The performances of the closed loops with the two fractional order controllers are compared experimentally by analyzing reference tracking, disturbance rejection and robustness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barbosa, R.S., Machado, J.A., Ferreira, I.M.: Tuning of PID controllers based on bode’s ideal transfer function. Nonlinear Dynamics (2004). https://doi.org/10.1007/s11071-004-3763-7

  2. Birs, I.R., Folea, S., Muresan, C.I.: An optimal fractional order controller for vibration attenuation. In: 2017 25th Mediterranean Conference on Control and Automation, MED 2017 (2017). https://doi.org/10.1109/MED.2017.7984221

  3. Birs, I., Copot, D., Muresan, C.I., Keyser, R.D., Ionescu, C.M.: Robust fractional order pi control for cardiac output stabilisation. IFAC-PapersOnLine 52(1), 994–999 (2019). https://doi.org/10.1016/j.ifacol.2019.06.192. https://www.sciencedirect.com/science/article/pii/S2405896319302800. In: 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019

  4. Birs, I., Muresan, C., Nascu, I., Ionescu, C.: A survey of recent advances in fractional order control for time delay systems. IEEE Access 7, 30,951–30,965 (2019). https://doi.org/10.1109/ACCESS.2019.2902567

    MATH  Google Scholar 

  5. Blevins, T.L.: PID advances in industrial control. In: IFAC Proceedings Volumes (IFAC-PapersOnline) (2012)

    Google Scholar 

  6. Chevalier, A., Copot, C., Copot, D., Ionescu, C.M., de Keyser, R.: Fractional-order feedback control of a poorly damped system. In: 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–4 (2014)

    Google Scholar 

  7. Hanane, B., Charef, A.: IMC based fractional order control design for automatic voltage regulator system. In: Proceedings of 2015 7th International Conference on Modelling, Identification and Control, ICMIC 2015 (2016). https://doi.org/10.1109/ICMIC.2015.7409476

  8. Hung, J.C.: Internal model control. Control and Mechatronics, 2nd edn. CRC Press (2016)

    Google Scholar 

  9. Keyser, R.D., Muresan, C.I., Ionescu, C.M.: An efficient algorithm for low-order direct discrete-time implementation of fractional order transfer functions. ISA Transactions 74, 229–238 (2018). https://doi.org/10.1016/j.isatra.2018.01.026. https://www.sciencedirect.com/science/article/pii/S0019057816306887

  10. Maâmar, B., Rachid, M.: IMC-PID-fractional-order-filter controllers design for integer order systems. ISA Transactions (2014). https://doi.org/10.1016/j.isatra.2014.05.007

  11. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008). https://doi.org/10.1016/j.conengprac.2007.08.006. https://www.sciencedirect.com/science/article/pii/S0967066107001566

  12. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls Fundamentals and Applications: Fundamentals of Fractional-order Systems. Springer-Verlag, London (2010)

    Book  Google Scholar 

  13. Morsali, J., Zare, K., Hagh, M.T.: Applying fractional order pid to design tcsc-based damping controller in coordination with automatic generation control of interconnected multi-source power system. Eng. Sci. Technol. Int. J. 20(1), 1–17 (2017). https://doi.org/10.1016/j.jestch.2016.06.002. https://www.sciencedirect.com/science/article/pii/S2215098616300878

  14. Muresan, C.I., Dutta, A., Dulf, E.H., Pinar, Z., Maxim, A., Ionescu, C.M.: Tuning algorithms for fractional order internal model controllers for time delay processes. Int. J. Control (2016). https://doi.org/10.1080/00207179.2015.1086027

  15. Muresan, C.I., Birs, I.R., Folea, S., Dulf, E.H., Prodan, O.: Experimental results of a fractional order PDλ controller for vibration suppresion. In: 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016 (2017). https://doi.org/10.1109/ICARCV.2016.7838715

  16. Muresan, C.I., Birs, I.R., Ionescu, C.M., Keyser, R.D.: Tuning of fractional order proportional integral/proportional derivative controllers based on existence conditions. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 233(4), 384–391 (2019). https://doi.org/10.1177/0959651818790809

    Google Scholar 

  17. Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control (1999). https://doi.org/10.1109/9.739144

  18. Prodan, O., Birs, I.R., Folea, S., Muresan, C.I.: Seismic mitigation in civil structures using a fractional order PD controller. Int. J. Struct. Civil Eng. Res. (2016). https://doi.org/10.18178/ijscer.5.2.93-96

  19. Rigelsford, J.: Advances in PID control. Assembly Automation (2001). https://doi.org/10.1108/aa.2001.03321aad.010

  20. Saxena, S., Hote, Y.V.: Advances in internal model control technique: A review and future prospects. IETE Tech. Rev. 29(6), 461–472 (2012). https://doi.org/10.4103/0256-4602.105001

    Article  Google Scholar 

  21. Shah, P., Agashe, S.: Review of fractional PID controller (2016). https://doi.org/10.1016/j.mechatronics.2016.06.005

  22. Sondhi, S., Hote, Y.V.: Fractional order controller and its applications: A review. In: Proc. of AsiaMIC (2012)

    Google Scholar 

  23. Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers. ISA Transactions (2011). https://doi.org/10.1016/j.isatra.2011.02.002

  24. Titouche, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M.: Internal model control-proportional integral derivative-fractional-order filter controllers design for unstable delay systems. J. Dyn. Syst. Measur. Control Trans. ASME (2016). https://doi.org/10.1115/1.4032131

  25. Vinopraba, T., Sivakumaran, N., Narayanan, S.: IMC based fractional order PID controller. In: Proceedings of the IEEE International Conference on Industrial Technology (2011). https://doi.org/10.1109/ICIT.2011.5754348

  26. Vinopraba, T., Sivakumaran, N., Narayanan, S., Radhakrishnan, T.K.: Design of internal model control based fractional order PID controller. J. Control Theory Appl. (2012). https://doi.org/10.1007/s11768-012-1044-4

  27. Wang, C., Jin, Y., Chen, Y.: Auto-tuning of fopi and fo[pi] controllers with iso-damping property. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 7309–7314 (2009). https://doi.org/10.1109/CDC.2009.5400057

Download references

Acknowledgements

This work was supported by a mobility grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P1-1.1-MC-2019-0357, within PNCDI III and by a grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2019-0745, within PNCDI III. This research was also supported by Research Foundation Flanders (FWO) under grant 1S04719N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela Birs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Birs, I., Nascu, I., Dulf, E., Muresan, C. (2021). Comparison of Various Fractional Order Controllers on a Poorly Damped System. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems III: Control and Stability. DSTA 2019. Springer Proceedings in Mathematics & Statistics, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-77314-4_18

Download citation

Publish with us

Policies and ethics