Skip to main content

Tissue Engineering of Esophagus

  • Chapter
  • First Online:
Esophageal Preservation and Replacement in Children
  • 379 Accesses

Abstract

Regenerative medicine is a multidisciplinary science that combines the principles of engineering and those of biological sciences toward the goal of providing possible solutions for current problem of tissue or organ loss. Esophagus replacement with tissue engineered substitutes has been an area of focus since surgical replacement alternatives such as gastric pull-up, jejunal replacement, and colon transposition are associated with severe morbidities and lower quality of life in the patients. Although the esophagus seems to be a simple tubular organ, research in the past two decades has exposed its complexity in engineering this structural as well as functional organ. In this chapter, the individual building blocks of cells that constitute the esophagus will be focused in context of experimental efforts to engineer the esophagus. The prospect of fetal approach in engineering of the esophagus has been extensively investigated in the past decade by our group and will be presented in this chapter especially with an overview of issues related to sourcing of cells, design and selection of scaffolds and polymers, hybrid construct using co-culture approaches, and the use of bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena AK. Congenital anomalies of soft tissues: birth defects depending on tissue engineering solutions and present advances in regenerative medicine. Tissue Eng Part B Rev. 2010;16:455–66.

    Article  PubMed  Google Scholar 

  2. Cauchi JA, Buick RG, Gornall P, Simms MH, Parikh DH. Oesophageal substitution with free and pedicled jejunum: short- and long-term outcomes. Pediatr Surg Int. 2007;23:11–9.

    Article  CAS  PubMed  Google Scholar 

  3. Arul GS, Parikh D. Oesophageal replacement in children. Ann. R. Coll. Surg. Engl. 2008;90(1):7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamamoto Y, Nakamura T, Shimizu Y, et al. Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg. 1999;118:276–86.

    Article  CAS  PubMed  Google Scholar 

  5. Carrel A, Lindbergh C. The culture of organs. Harper Brothers, New York: Paul B. Hoeber Inc.; 1938.

    Book  Google Scholar 

  6. Senker J, Enzing C, Joly PB, et al. European exploitation of biotechnology-do government policies help? A recent survey of public spending on biotechnology in Europe suggests that money alone cannot stimulate growth of the sector. Nat Biotechnol. 2000;18:605–8.

    Article  CAS  PubMed  Google Scholar 

  7. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6(Suppl 3):S311–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  CAS  PubMed  Google Scholar 

  9. Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng. 1999;5:525–31.

    Article  CAS  PubMed  Google Scholar 

  10. Saxena AK, Ainoedhofer H, Höllwarth ME. Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods. 2010;16:109–14.

    Article  CAS  PubMed  Google Scholar 

  11. Priddle H, Jones DR, Burridge PW, et al. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells. 2006;24:815–24.

    Article  PubMed  Google Scholar 

  12. Raikwar SP, Mueller T, Zavazava N. Strategies for developing therapeutic application of human embryonic stem cells. Physiology (Bethesda). 2006;21:19–28.

    CAS  Google Scholar 

  13. Tian X, Kaufman DS. Hematopoietic development of human embryonic stem cells in culture. Methods Mol Med. 2005;105:425–36.

    PubMed  Google Scholar 

  14. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006;27:208–19.

    Article  PubMed  Google Scholar 

  15. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.

    Article  CAS  PubMed  Google Scholar 

  16. Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–6.

    Article  CAS  PubMed  Google Scholar 

  17. Raghunath J, Salacinski HJ, Sales KM, et al. Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol. 2005;16:503–9.

    Article  CAS  PubMed  Google Scholar 

  18. Riha GM, Lin PH, Lumsden AB, Yao Q. Review: application of stem cells for vascular tissue engineering. Tissue Eng. 2005;11:1535–52.

    Article  CAS  PubMed  Google Scholar 

  19. Risbud MV, Shapiro IM. Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res. 2005;8:54–9.

    Article  CAS  PubMed  Google Scholar 

  20. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56:283–94.

    Article  CAS  PubMed  Google Scholar 

  21. Braccini A, Wendt D, Jaquiery C, et al. Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells. 2005;23:1066–72.

    Article  PubMed  Google Scholar 

  22. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  23. De Coppi P, Bartsch G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  CAS  Google Scholar 

  24. Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59.

    Article  CAS  PubMed  Google Scholar 

  25. Tasso R, Augello A, Cardia M, et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009;30:150–7.

    Article  CAS  PubMed  Google Scholar 

  26. Saxena AK. Tissue engineering: present concepts and strategies. J Indian Assoc Pediatr Surg. 2005;10:14–9.

    Article  Google Scholar 

  27. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  PubMed  Google Scholar 

  28. Ackbar R, Ainoedhofer H, Gugatschka, Saxena AK. Decellularized ovine esophageal mucosa for esophageal tissue engineering. Tech Health Care. 2012;20:215–23.

    Article  Google Scholar 

  29. Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater. 2015;27:3717–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang HY, Zhang YQ. Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog. 2015;31:630–40.

    Article  PubMed  CAS  Google Scholar 

  31. Toh WS, Loh XJ. Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2014;45:690–7.

    Article  CAS  PubMed  Google Scholar 

  32. Saxena AK, Kofler K, Ainödhofer H, Höllwarth ME. Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg. 2009;13:1037–43.

    Article  PubMed  Google Scholar 

  33. Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Smith KG, Thornhill MH. Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci Mater Med. 2008;19:1793–801.

    Article  CAS  PubMed  Google Scholar 

  34. Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int. 2010;26:557–73.

    Article  PubMed  Google Scholar 

  35. Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE Jr. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 2000;6:75–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mironov V, Kasyanov V, McAllister K, Oliver S, Sistino J, Markwald R. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J Craniofac Surg. 2003;14:340–7.

    Article  PubMed  Google Scholar 

  37. Scaglione S, Zerega B, Badano R, Benatti U, Fato M, Quarto R. A three-dimensional traction/torsion bioreactor system for tissue engineering. Int J Artif Organs. 2010;33:362–9.

    Article  CAS  PubMed  Google Scholar 

  38. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999;84:489–93.

    Article  Google Scholar 

  39. Barron V, Lyons E, Stenson-Cox C, et al. Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng. 2003;31:1017–30.

    Article  CAS  PubMed  Google Scholar 

  40. Takimoto Y, Okumura N, Nakamura T, et al. Long-term follow-up of the experimental replacement of the esophagus with a collagen–silicone composite tube. ASAIO J. 1993;39:M736–9.

    CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Nakamura T, Shimizu Y, et al. Intrathoracic esophageal replacement with a collagen sponge–silicone double-layer tube: evaluation of omental-pedicle wrapping and prolonged placement of an inner stent. ASAIO J. 2000;46:734–9.

    Google Scholar 

  42. Hori Y, Nakamura T, Kimura D, et al. Effect of basic fi broblast growth factor on vascularization in esophagus tissue engineering. Int J Artif Organs. 2003;26:241–4.

    Article  CAS  PubMed  Google Scholar 

  43. Badylak S, Meurling S, Chen M, et al. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000;35:1097–103.

    Article  CAS  PubMed  Google Scholar 

  44. Badylak SF, Vorp DA, Spievack AR, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.

    Article  PubMed  Google Scholar 

  45. Doede T, Bondartschuk M, Joerck C, et al. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–33.

    Article  PubMed  Google Scholar 

  46. Kofler K, Ainoedhofer H, Höllwarth ME, Saxena AK. Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering. Pediatr Surg Int. 2010;26:97–104.

    Article  PubMed  Google Scholar 

  47. Macheiner T, Kuess A, Dye J, Saxena AK. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering. Biomed Mater Eng. 2014;24:1457–68.

    CAS  PubMed  Google Scholar 

  48. Kofler K, Leitinger G, Kristler M, Saxena AK. Smooth muscle tissue engineering for hybrid tubular organs: scanning electron microscopic investigations of cell interactions with collagen scaffolds. J Tissue Eng Regen Med. 2009;3:321–4. https://doi.org/10.1002/term.171.

    Article  CAS  PubMed  Google Scholar 

  49. Wood JD. Enteric nervous system. In: Johnson LE, editor. Encyclopedia of gastroenterology. San Diego: Elsevier Academic Press; 2004. p. 701–6.

    Chapter  Google Scholar 

  50. Bischof A. Demonstration of the myenteric plexus architecture in ovine esophagus with tissue engineering implication. Doctoral thesis for Human Medicine 09/10–020 Medical University of Graz, Austria 2009.

    Google Scholar 

  51. Macheiner T, Ackbar R, Saxena AK. Isolation, identification and culture of myenteric plexus cells from ovine esophagus. Esophagus. 2013;10:144–8.

    Article  Google Scholar 

  52. Saxena AK, Klimbacher G. Comparison of esophageal submucosal glands in experimental models for esophagus tissue engineering applications. Esophagus. 2019;16:77–84. https://doi.org/10.1007/s10388-018-0633-9.

    Article  PubMed  Google Scholar 

  53. Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials. 2005;26:6217–28.

    Article  CAS  PubMed  Google Scholar 

  54. Leong MF, Chian KS, Mhaisalkar PS, Ong WF, Ratner BD. Effect of electrospun poly(D,L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A. 2009;89:1040–8.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials. 2007;28:861–8.

    Google Scholar 

  56. Sato M, Ando N, Ozawa S, et al. An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J. 1994;40:M389–92.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi K, Ando N, Ozawa S, et al. A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. ASAIO J. 2004;50:261–6.

    Article  CAS  PubMed  Google Scholar 

  58. Grikscheit T, Ochoa ER, Srinivasan A, et al. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg. 2003;126:537–44.

    Article  PubMed  Google Scholar 

  59. Soltysiak P, Saxena AK. Micro-computed tomography for implantation site imaging during in situ oesophagus tissue engineering in a live small animal model. J Tissue Eng Regen Med. 2009;3:573–6.

    Article  PubMed  Google Scholar 

  60. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55:1704–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, Li XQ, Zuo X, Zhi W, Yang P, Xie HQ, Yang ZM. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood). 2009;234:453–61.

    Article  CAS  Google Scholar 

  62. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136:850–9.

    Article  PubMed  Google Scholar 

  63. Harley BA, Hastings AZ, Yannas IV, Sannino A. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials. 2006;27:866–74.

    Article  CAS  PubMed  Google Scholar 

  64. Soltysiak P, Höllwarth ME, Saxena AK. Comparison of suturing techniques in the formation of collagen scaffold tubes for composite tubular organ tissue engineering. Biomed Mater Eng. 2010;20:1–11.

    CAS  PubMed  Google Scholar 

  65. Andrade MG, Weissman R, Reis SR. Tissue reaction and surface morphology of absorbable sutures after in vivo exposure. J Mater Sci Mater Med. 2006;17:949–61.

    Article  CAS  PubMed  Google Scholar 

  66. Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME. Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg. 2010;45:859–64.

    Article  PubMed  Google Scholar 

  67. Vineberg A, Pifarre R, Mercier C. An operation designed to promote the growth of new coronary arteris, using a detached omental graft: a preliminary report. Can Med Assoc J. 1962;16:1116–8.

    Google Scholar 

  68. Straw RC, Tomlinson JL, Constantinescu G, Turk MA, Hogan PM. Use of a vascular skeletal muscle graft for canine esophageal reconstruction. Vet Surg. 1987;16:155–63.

    Article  CAS  PubMed  Google Scholar 

  69. Saxena AK, Baumgart H, Tauschmann K, et al. Esophagus tissue engineering: in-situ generation of rudimentary esophageal conduit using the fetal model. Histol Histopathol. 2011;26:185.

    Google Scholar 

  70. Saxena AK, Ainoedhofer H, Soltysiak P. Successful development of a fetal model for esophagus tissue engineering. J Neonatal Surg. 2018;7:33–5. https://doi.org/10.21699/jns.v7i3.758.

    Article  Google Scholar 

  71. Saxena AK. Esophagus tissue engineering: designing and crafting the components for the “hybrid construct” approach. Eur J Pediatr Surg. 2014;24(3):246–62. https://doi.org/10.1055/s-0034-1382261.

    Article  PubMed  Google Scholar 

  72. Saxena AK, Kofler K, Ainoedhofer H, Kuess A, Höllwarth ME. Complexity of approach and demand for esophagus tissue engineering. Tissue Eng Part A. 2008;14:829.

    Google Scholar 

Download references

Acknowledgment

This research was funded by European Union Grant within the sixth Framework Program (EuroSTEC; LSHC-CT-2006-037409). Efforts of all EuroSTEC consortium partners that contributed to esophagus tissue engineering project are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulya K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, A.K. (2021). Tissue Engineering of Esophagus. In: Pimpalwar, A. (eds) Esophageal Preservation and Replacement in Children. Springer, Cham. https://doi.org/10.1007/978-3-030-77098-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77098-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77097-6

  • Online ISBN: 978-3-030-77098-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics