Skip to main content

Quantum Mechanical Model of the Bloch NMR Flow Equations for Transport Analysis of Quantum-Drugs in Microscopic Blood Vessels Applicable in Nanomedicine

  • Chapter
  • First Online:
Computational Molecular Magnetic Resonance Imaging for Neuro-oncology

Abstract

In the human cardiovascular system, there are more than 1010 capillary blood vessels the diameter of which is about the same size as that of blood cells. When blood flows through the capillaries, the blood cells have to be squeezed, deformed and move in single files. This makes it very difficult to analyse blood flow in these microscopic blood vessels in terms of classical mechanical quantities. The focus of this chapter is the application of known quantum mechanical formulations and models to the Bloch NMR flow equations; it provides a theoretical foundation that may enhance accurate understanding of the transport of nanodevices in microscopic blood vessels used in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818–1822.

    Article  ADS  Google Scholar 

  • Aruldhas, G. (2009). Quantum mechanics. PHI learning private limited.

    Google Scholar 

  • Awojoyogbe, O. B. (2002). A mathematical model of the Bloch NMR equations for quantitative analysis of blood flow in blood vessels with changing cross-section—I. Physica A: Statistical Mechanics and its Applications, 303(1–2), 163–175.

    Article  ADS  MathSciNet  Google Scholar 

  • Awojoyogbe, O. B. (2003). A mathematical model of Bloch NMR equations for quantitative analysis of blood flow in blood vessels of changing cross-section—PART II. Physica A: Statistical Mechanics and its Applications, 323, 534–550.

    Article  ADS  MathSciNet  Google Scholar 

  • Awojoyogbe, O. B. (2004). Analytical solution of the time-dependent Bloch NMR flow equations: A translational mechanical analysis. Physica A: Statistical Mechanics and its Applications, 339(3–4), 437–460.

    Article  ADS  Google Scholar 

  • Awojoyogbe, O. B. (2007). A quantum mechanical model of the Bloch NMR flow equations for electron dynamics in fluids at the molecular level. Physica Scripta, 75(6), 788–794.

    Article  ADS  Google Scholar 

  • Awojoyogbe, O. B., & Boubaker, K. (2009). A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Current Applied Physics, 9(1), 278–283.

    Article  ADS  Google Scholar 

  • Awojoyogbe, O. B., Dada, M., Faromika, O. P., Moses, O. F., & Fuwape, I. A. (2009). Polynomial solutions of Bloch NMR flow equations for classical and quantum mechanical analysis of fluid flow in porous media. Open Magnetic Resonance Journal, 2, 46–56.

    Google Scholar 

  • Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12(7), 620–636.

    Article  ADS  Google Scholar 

  • Bolger, A. F., Heiberg, E., Karlsson, M., Wigstrom, L., Engvall, J., Sigfridsson, A., Ebbers, T., Kvitting, J. E., Carlhall, C. J., & Wranne, B. (2007). Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 9, 741–747.

    Article  Google Scholar 

  • Cowan, B. P. (1997). Nuclear magnetic resonance and relaxation (1st ed.). Cambridge University Press.

    Google Scholar 

  • Dada, M., Awojoyogbe, O. B., Moses, O. F., Ojambati, O. S., & De, D. K. (2009). A mathematical analysis of stenosis geometry, NMR magnetizations and signals based on the Bloch NMR flow equations, Bessel and Boubaker polynomial expansions. Journal of Biological Physics and Chemistry, 9(3), 101–106.

    Google Scholar 

  • Glaser, R. (2012). Biophysics: An introduction (p. 233). Springer Science & Business Media.

    Book  Google Scholar 

  • Haacke, E. M., Lin, W., & Li, D. (2000). Whole body magnetic resonance angiography. In I. R. Young (Ed.), Methods in biomedical magnetic resonance imaging and spectroscopy (pp. 488–500). John Wiley & Sons.

    Google Scholar 

  • Jiang, S., Gnanasammandhan, M. K., & Zhang, Y. (2010). Optical imaging-guided cancer therapy with fluorescent nanoparticles. Journal of the Royal Society Interface, 7(42), 3–18.

    Article  Google Scholar 

  • Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303(5665), 1813–1818.

    Article  ADS  Google Scholar 

  • Kundu, P. K., & Cohen, I. M. (2004). Fluid mechanics. Elsevier Academic Press.

    Google Scholar 

  • Libby, P. (1995). Molecular bases of the acute coronary syndromes. Circulation, 91(11), 2844–2850.

    Article  Google Scholar 

  • Marieb, E. N., & Hoehn, K. (2013). The cardiovascular system: Blood vessels. Human anatomy & physiology (p. 712). Pearson.

    Google Scholar 

  • Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. The FASEB Journal, 19(3), 311–330.

    Article  Google Scholar 

  • Moratal, D., Brummer, M. E., Martí-Bonmatí, L., & Vallés-Lluch, A. (2006). NMR imaging. In Wiley encyclopedia of biomedical engineering.

    Google Scholar 

  • Morrisett, J., Vick, W., Sharma, R., Lawrie, G., Reardon, M., Ezell, E., Schwartz, J., & Gorenstein, D. (2003). Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magnetic Resonance Imaging, 21(5), 465–474.

    Article  Google Scholar 

  • Shankar, R. (2012). Principles of quantum mechanics. Springer Science & Business Media.

    MATH  Google Scholar 

  • Tang, C. L. (2005). Fundamentals of quantum mechanics for solid state electronics and optics. Cambridge University Press.

    Book  Google Scholar 

  • Thirring, W. (2013). Quantum mathematical physics: Atoms, molecules and large systems. Springer Science & Business Media.

    Google Scholar 

  • Tortora, G. J., & Derrickson, B. (2012). The cardiovascular system: Blood vessels and hemodynamics. Principles of anatomy and physiology (p. 817). John Wiley & Sons.

    Google Scholar 

  • Watson, G. N. (1966). A treatise on the theory of Bessel functions (2nd ed.). Cambridge University Press.

    MATH  Google Scholar 

  • Jain, K. K. (2008). Nanomedicine: Application of nanobiotechnology in medical practice. Medical Principles and Practice, 17(2), 89–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dada, M.O., Awojoyogbe, B.O. (2021). Quantum Mechanical Model of the Bloch NMR Flow Equations for Transport Analysis of Quantum-Drugs in Microscopic Blood Vessels Applicable in Nanomedicine. In: Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-76728-0_7

Download citation

Publish with us

Policies and ethics