Skip to main content

Digital Convex + Unimodular Mapping = 8-Connected (All Points but One 4-Connected)

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12708))

Abstract

In two dimensional digital geometry, two lattice points are 4-connected (resp. 8-connected) if their Euclidean distance is at most one (resp. \(\sqrt{2}\)). A set \(S \subset \mathbb {Z}^2\) is 4-connected (resp. 8-connected) if for all pair of points \(p_1, p_2\) in S there is a path connecting \(p_1\) to \(p_2\) such that every edge consists of a 4-connected (resp. 8-connected) pair of points. The original definition of digital convexity which states that a set \(S \subset \mathbb {Z}^d\) is digital convex if \(\mathrm {conv}(S) \cap \mathbb {Z}^d= S\), where \(\mathrm {conv}(S)\) denotes the convex hull of S does not guarantee connectivity. However, multiple algorithms assume connectivity. In this paper, we show that in two dimensional space, any digital convex set S of n points is unimodularly equivalent to a 8-connected digital convex set C. In fact, the resulting digital convex set C is 4-connected except for at most one point which is 8-connected to the rest of the set. The matrix of \(SL_2(\mathbb {Z})\) defining the affine isomorphism of \(\mathbb {Z}^2\) between the two unimodularly equivalent lattice polytopes S and C can be computed in roughly O(n) time. We also show that no similar result is possible in higher dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Boston (2004)

    MATH  Google Scholar 

  2. Ronse, C.: A bibliography on digital and computational convexity (1961–1988). IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 181–190 (1989)

    Article  Google Scholar 

  3. Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)

    Article  Google Scholar 

  4. Kim, C.E., Rosenfeld, A.: Convex digital solids. IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 612–618 (1982)

    Article  Google Scholar 

  5. Chassery, J.-M.: Discrete convexity: definition, parametrization, and compatibility with continuous convexity. Comput. Vis. Graph. Image Proces. 21(3), 326–344 (1983)

    Article  Google Scholar 

  6. Kishimoto, K.: Characterizing digital convexity and straightness in terms of length and total absolute curvature. Comput. Vis. Image Underst. 63(2), 326–333 (1996)

    Article  Google Scholar 

  7. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and circular hull of a digital region. Pattern Recogn. 31(12), 2007–2016 (1998)

    Article  Google Scholar 

  8. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155(2), 321–347 (1996)

    Article  MathSciNet  Google Scholar 

  9. Daurat, A.: Salient points of q-convex sets. Int. J. Pattern Recogn. Artif. Intell. 15(7), 1023–1030 (2001)

    Article  Google Scholar 

  10. Haase, C., Nill, B., Paffenholz, A.: Lecture notes on lattice polytopes. Fall School on Polyhedral Combinatorics (2012)

    Google Scholar 

  11. Bárány, I., Pach, J.: On the number of convex lattice polygons. Comb. Probab. Comput. 1(4), 295–302 (1992)

    Article  MathSciNet  Google Scholar 

  12. Bárány, I., Füredi, Z.: On the lattice diameter of a convex polygon. Discret. Math. 241(1), 41–50 (2001)

    Article  MathSciNet  Google Scholar 

  13. Pick, G.: Geometrisches zur zahlenlehre. Sitzungsberichte des Deutschen Naturwissenschaftlich-Medicinischen Vereines für Böhmen "Lotos" in Prag., vol. 47–48 1899–1900 (1899)

    Google Scholar 

  14. Crombez, L., da Fonseca, G.D., Gérard, Y.: Efficient algorithms to test digital convexity. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 409–419. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_32

    Chapter  Google Scholar 

  15. Žunić, J.: Notes on optimal convex lattice polygons. Bull. Lond. Math. Soc. 30(4), 377–385 (1998)

    Article  MathSciNet  Google Scholar 

  16. Bárány, I.: Extremal problems for convex lattice polytopes: a survey. Contemp. Math. 453, 87–104 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Crombez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crombez, L. (2021). Digital Convex + Unimodular Mapping = 8-Connected (All Points but One 4-Connected). In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics