Skip to main content

Biotechnological Advancements in Livestock Production

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 54

Abstract

Animal-based agriculture is being used to surmount the food demand for the ever-increasing human population under limited land and water resources. The meat and milk consumption has severely grown over the past few decades with increasing population and the demand is expected to grow by double in the next three decades. The fulfillment of milk, meat, and related products demand has turned into a greater challenge for poor and developing countries which is leading to malnutrition. The traditional methods for livestock production are facing challenges due to limited offspring production, unstable genetic improvement, tedious methods, high cost, and disease susceptibility. Here we review the modern technological developments offering interesting solutions to the issues associated with conventional methods for animal production. The advanced biotechnological interventions such as in vitro fertilization, somatic nuclear transfer, embryonic stem cell technology, multiple ovulations, and embryo transfer could improve the nutritional composition and animal health. The capabilities of precise and desired interventions at the cellular and molecular levels renders unprecedented developments in animal reproduction. Molecular marker-assisted selection and transfer of useful and superior traits to the recipient line ensures improvements such as better growth, quality, and disease-resistance for several generations. The chapter covers biotechnological methodologies adopted in modern animal breeding, including marker-assisted selection methods for stable and improved livestock production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFLPs:

Amplified fragment length polymorphisms

AI:

Artificial insemination (AI)

BCWD:

Bacterial cold-water disease

bFGF:

Basic fibroblast growth factor

BLUP:

Best linear unbiased prediction

BOEC:

Bovine oviduct epithelial cells

CRISPR Cas9:

Cluster regularly interspaced short palindromic repeats

DNA:

De-oxy ribonucleic acid

eCG:

Equine chorionic gonadotropins

ESC:

Embryonic stem cell technology (ESC)

ET:

Embryo transfer (ET)

FAO:

Food and Agriculture Organization

FSH:

Follicle-stimulating hormones

GAS:

Gene-assisted selection

IETS:

International Embryo Technology Society

IVF:

In vitro fertilization (IVF)

JAK/STAT:

Janus kinase and signal transducer and activator of transcription proteins

LD:

Linkage disequilibrium

LE:

Linkage equilibrium

LH:

Luteinizing hormone

LIF:

Leukemia inhibitory factor

MAI:

Molecular marker-assisted introgression

MAS:

Marker Assisted Selection

MOET:

Multiple ovulation and embryo transfer (MOET)

NGS:

Next-generation sequencing

PCC:

Premature chromosome condensation

QTL:

Quantitative Trait Locus

RAPD:

Random amplified polymorphic DNA

RFLPs:

Restriction fragment length polymorphisms

SCNT:

Somatic cell nuclear transfer (SCNT)

SCR:

Sire conception rate

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeats

TALEN:

Transcription activator-like effector nuclease

TGF-beta:

Transforming growth factor beta

TGS:

Third-generation sequencing

References

  • Abd El-Hack ME, Abdelnour SA, Swelum AA, Arif M (2018) The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. J Mol Biol Rep 45:1445–1456

    Article  CAS  Google Scholar 

  • Abdalla H, Shimoda M, Hirabayashi M, Hochi S (2009) A combined treatment of ionomycin with ethanol improves blastocyst development of bovine oocytes harvested from stored ovaries and microinjected with spermatozoa. Theriogenology 72:453–460

    Article  CAS  PubMed  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision

    Google Scholar 

  • Anouassi A, Tibary A (2013) Development of a large commercial camel embryo transfer program: 20 years of scientific research. Anim Reprod Sci 136:211–221

    Article  PubMed  Google Scholar 

  • Arias-Álvarez M, García-García RM, Lopez-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL (2017) In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reprod Fertil Dev 29:1667–1679

    Article  PubMed  CAS  Google Scholar 

  • Ashraf WM, Giuma EA, Magdy AM, Abdelatefm AA, Abdulraouf AM, Ghada EA, Ismail HM, Katarzyna J-W (2019) Genomic technologies in improving the efficiency of animal health and husbandry. Int J Prog Sci Technol 17:265–278

    Google Scholar 

  • Bari F, Khalid M, William H, Murray A, Merrell B (2003) Factors affecting the survival of sheep embryos after transfer within a MOET program. Theriogenology 59:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Bergstein-Galan TG, Weiss RR, Kozicki LE (2019) Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reprod Domest Anim 54:401–407

    PubMed  Google Scholar 

  • Betteridge KJ (1981) An historical look at embryo transfer. Reproduction 62:1–13

    Article  CAS  Google Scholar 

  • Blomberg LA, Telugu BPVL (2012) Twenty years of embryonic stem cell research in farm animals. Reprod Domest Anim 47:80–85

    Article  PubMed  Google Scholar 

  • Bó GA, Baruselli PS (2014) Synchronization of ovulation and fixed-time artificial insemination in beef cattle. Animal 8:144–150

    Article  PubMed  Google Scholar 

  • Bo GA, Mapletoft RJ (2018) Evaluation and classification of bovine embryos. Anim Reprod (AR) 10:344–348

    Google Scholar 

  • Bó GA, Mapletoft RJ (2018) Embryo transfer technology in cattle. In: Animal biotechnology 1. Springer, Cham

    Google Scholar 

  • Brinsko SP, Varner DD (1992) Artificial insemination and preservation of semen. Vet Clin N Am Equine Pract 8:205–218

    Article  CAS  Google Scholar 

  • Brüssow K-P, Torner H, Kanitz W, Rátky J (2000) In vitro technologies related to pig embryo transfer. Reprod Nutr Dev 40:469–480

    Article  PubMed  Google Scholar 

  • Burrows WH, Quinn JP (1939) Artificial insemination of chickens and turkeys. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Campbell KH, Loi P, Otaegui PJ, Wilmut I (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1:40–46

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (2000) How close are we to implementing gene targeting in animals other than the mouse? Proc Natl Acad Sci 97:956–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá MG, Izquierdo D, Rodríguez-Prado M, Hammami S, Paramio M-T (2012) Effect of oocyte quality on blastocyst development after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in a sheep model. Fertil Steril 97:1004–1008

    Article  PubMed  Google Scholar 

  • Chebel RC, Santos JEP, Reynolds JP, Cerri RLA, Juchem SO, Overton M (2004) Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim Reprod Sci 84:239–255

    Article  PubMed  Google Scholar 

  • Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard J-P (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20:366–369

    Article  PubMed  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, de Leon FAP, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Cognie Y (1999) State of the art in sheep-goat embryo transfer. Theriogenology 51:105–116

    Article  CAS  PubMed  Google Scholar 

  • Cong S, Cao G, Liu D (2014) Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology 66:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson TR (2004) The chick embryo amnion as an in vitro culture system for IVF and NT embryos. Louisiana State University, Baton Rouge

    Google Scholar 

  • Deckha M, Xie Y (2008) The stem cell debate: why should it matter to animal advocates. Stanford J Anim Law Policy 1:69

    Google Scholar 

  • Dekkers JCM (2004) Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82:E313–EE28

    PubMed  Google Scholar 

  • Dekkers JCM, Van der Werf J (2007) Strategies, limitations and opportunities for marker-assisted selection in livestock. In: Marker-assisted selection-current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 167–184

    Google Scholar 

  • del Collado M, da Silveira JC, Oliveira MLF, Alves BMSM, Simas RC, Godoy AT, Coelho MB, Marques LA, Carriero MM, Nogueira MFG, Eberlin MN, Silva LA, Meirelles FV, Perecin F (2017) In vitro maturation impacts cumulus–oocyte complex metabolism and stress in cattle. Reproduction 154:881

    Article  CAS  PubMed  Google Scholar 

  • Drost M, Wright JM, Elsden RP (1986) Intergeneric embryo transfer between water buffalo and domestic cattle. Theriogenology 25:13–23

    Article  Google Scholar 

  • Enright BP, Kubota C, Yang X, Tian XC (2003) Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin a or 5-aza-2′-deoxycytidine. Biol Reprod 69:896–901

    Article  CAS  PubMed  Google Scholar 

  • Evans G, Maxwell WMC (1987) Salamons’ artificial insemination of sheep and goats. Butterworths, Sydney

    Google Scholar 

  • Ezashi T, Yuan Y, Michael Roberts R (2016) Pluripotent stem cells from domesticated mammals. Annu Rev Anim Biosci 4:223–253

    Article  CAS  PubMed  Google Scholar 

  • Fertilization, In-vitro. Biotechnology for the livestock industry

    Google Scholar 

  • Fukui Y, Ono H (1989) Effects of sera, hormones and granulosa cells added to culture medium for in-vitro maturation, fertilization, cleavage and development of bovine oocytes. Reproduction 86:501–506

    Article  CAS  Google Scholar 

  • Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S, Kaneda M, Ikeda M, Hosoe M, Kizaki K, Tokunaga T (2013) Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol Reprod 89(28):1–12

    Google Scholar 

  • Garcia-Dominguez X, Juarez JD, Vicente JS, Marco-Jiménez F (2020) Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology

    Google Scholar 

  • Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:1–16

    Google Scholar 

  • Gong G, Roach ML, Le Jiang XY, Tian XC (2010) Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram (Formerly “Cloning and Stem Cells”) 12:151–160

    CAS  Google Scholar 

  • Gugjoo MB, Fazili MR, Shah RA, Sharma GT (2019) Mesenchymal stem cell: basic research and potential applications in cattle and buffalo. J Cell Physiol 234:8618–8635

    Article  CAS  PubMed  Google Scholar 

  • Gupta MK, Das ZC, Heo YT, Joo JY, Chung H-J, Song H, Kim J-H, Kim N-H, Lee HT, Ko DH (2013) Transgenic chicken, mice, cattle, and pig embryos by somatic cell nuclear transfer into pig oocytes. Cell Reprogram (Formerly “Cloning and Stem Cells”) 15:322–328

    CAS  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    CAS  PubMed  Google Scholar 

  • Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci 107:9222–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison P, Bruinsma J, de Haen H, Alexandratos N, Schmidhuber J, Bödeker G, Ottaviani MG (2002) World agriculture: towards 2015/2030. Online. http://www.fao.org/documents

  • Hicks E, Mentler M, Arena HA, Current JZ, Whitaker BD (2020) Cyanidin improves oocyte maturation and the in vitro production of pig embryos. Vitro Cell Dev Biol Anim 56:577–584

    Article  CAS  Google Scholar 

  • Hill JR, Burghardt RC, Jones K, Long CR, Looney CR, Shin T, Spencer TE, Thompson JA, Winger QA, Westhusin ME (2000a) Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 63:1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Hill JR, Winger QA, Long CR, Looney CR, Thompson JA, Westhusin ME (2000b) Development rates of male bovine nuclear transfer embryos derived from adult and fetal cells. Biol Reprod 62:1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Hyttel PFTCH, Fair T, Callesen H, Greve T (1997) Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47:23–32

    Article  Google Scholar 

  • Jones TA, Jones SM, Paggett KC (2006) Emergence of hearing in the chicken embryo. J Neurophysiol 96:128–141

    Article  PubMed  Google Scholar 

  • Khosla S, Dean W, Reik W, Feil R (2001) Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 7:419–427

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Noh EJ, Park HY, Park MJ, Noh EH, Lee JB, Jeong CJ, Lee DS, Riu KZ, Park SP (2012) Establishment of bovine embryonic stem cell lines using a minimized feeder cell drop. Cell Reprogram (Formerly “Cloning and Stem Cells”) 14:520–529

    CAS  Google Scholar 

  • Kishigami S, Mizutani E, Ohta H, Hikichi T, Van Thuan N, Wakayama S, Bui H-T, Wakayama T (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189

    Article  CAS  PubMed  Google Scholar 

  • Knox RV (2016) Artificial insemination in pigs today. Theriogenology 85:83–93

    Article  CAS  PubMed  Google Scholar 

  • Kubota C, Yamakuchi H, Todoroki J, Mizoshita K, Tabara N, Barber M, Yang X (2000) Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci 97:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavial F, Pain B (2010) Chicken embryonic stem cells as a non-mammalian embryonic stem cell model. Develop Growth Differ 52:101–114

    Article  CAS  Google Scholar 

  • Leibfried-Rutledge ML, Critser ES, Parrish JJ, First NL (1989) In vitro maturation and fertilization of bovine oocytes. Theriogenology 31:61–74

    Article  Google Scholar 

  • Li X-X, Cao P-H, Han W-X, Xu Y-K, Wu H, Yu X-L, Chen J-Y, Zhang F, Li Y-H (2018) Non-invasive metabolomic profiling of culture media of ICSI-and IVF-derived early developmental cattle embryos via Raman spectroscopy. Anim Reprod Sci 196:99–110

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Han XJ, Liu MH, Wang SY, Jia CW, Yu L, Ren G, Wang L, Li W (2014) Three-day-old human unfertilized oocytes after in vitro fertilization/intracytoplasmic sperm injection can be activated by calcium ionophore a23187 or strontium chloride and develop to blastocysts. Cell Reprogram 16:276–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Vallejo RL, Evenhuis JP, Martin KE, Hamilton A, Gao G, Leeds TD, Wiens GD, Palti Y (2018) Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population. Front Genet 9:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loi P, Iuso D, Czernik M, Ogura A (2016) A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol 34:791–797

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Zhang Y (2015) Cell totipotency: molecular features, induction, and maintenance. Natl Sci Rev 2:217–225

    Article  CAS  PubMed  Google Scholar 

  • Luciano AM, Sirard M-A (2017) Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod 98:162–169

    Article  Google Scholar 

  • Lyu D, Hu Y, Wu H, Sun S, Wang W (2019) Estimating breeding values for juvenile body weight using trait associated SNP assisted BLUP in turbot (Scophthalmus maximus). Aquaculture 508:46–51

    Article  Google Scholar 

  • Maruotti J, Muñoz M, Degrelle SA, Gómez E, Louet C, Monforte CD, De Longchamp PH, Brochard V, Hue I, Caamaño JN (2012) Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol Reprod Dev 79:461–477

    Article  CAS  PubMed  Google Scholar 

  • McKinnon AO, Tinson AH, Nation G (1994) Embryo transfer in dromedary camels. Theriogenology 41:145–150

    Article  Google Scholar 

  • Mendel G (1866) Versuche uber pflanzen-hybriden. Verhandlungen des naturforschenden Vereins in Brunn fur 4:3–47

    Google Scholar 

  • Meuwissen THE, Van Arendonk JAM (1992) Potential improvements in rate of genetic gain from marker-assisted selection in dairy cattle breeding schemes. J Dairy Sci 75:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Moniruzzaman M, Khatun R, Mintoo AA (2014) Application of marker assisted selection for livestock improvement in Bangladesh. Bangladesh Vet 31:1–11

    Google Scholar 

  • Morrell JM (1995) Artificial insemination in rabbits. Br Vet J 151:477–488

    Article  CAS  PubMed  Google Scholar 

  • Morrell JM (2011) Artificial insemination: current and future trends. Artif Inseminn Farm Anim 1:1–14

    Google Scholar 

  • Morrell JM, Nongbua T, Valeanu S, Verde IL, Lundstedt-Enkel K, Edman A, Johannisson A (2017) Sperm quality variables as indicators of bull fertility may be breed dependent. Anim Reprod Sci 185:42–52

    Article  PubMed  Google Scholar 

  • Motlik J, Fulka J (1986) Factors affecting meiotic competence in pig oocytes. Theriogenology 25:87–96

    Article  Google Scholar 

  • Muir WM, Aggrey SE (2003) Poultry genetics, breeding, and biotechnology. CABI, Wallingford

    Book  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  PubMed  Google Scholar 

  • Nimbkar C. Indian experiences in implementing marker assisted breeding in livestock

    Google Scholar 

  • Noakes DE, Parkinson TJ, England GCW (2018) Arthur’s veterinary reproduction and obstetrics-e-book. Elsevier Health Sciences

    Google Scholar 

  • Notarianni E, Gallit C, Lauriet S, Moor RM, Evans MJ (1991) Derivation of pluripotent, embryoniccell lines from the pig and sheep. Methods 10:250

    Google Scholar 

  • Ogura A, Inoue K, Ogonuki N, Lee J, Kohda T, Ishino F (2002) Phenotypic effects of somatic cell cloning in the mouse. Cloning Stem Cells 4:397–405

    Article  CAS  PubMed  Google Scholar 

  • Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry ACF (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    Article  CAS  PubMed  Google Scholar 

  • Parrish JJ (2014) Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81:67–73

    Article  PubMed  Google Scholar 

  • Pavlok A, Torner H, Motlik J, Fulka J, Kauffold P, Duschinski U (1988) Fertilization of bovine oocytes in vitro: effect of different sources of gametes on fertilization rate and frequency of fertilization anomalies. Anim Reprod Sci 16:207–213

    Article  Google Scholar 

  • Pickering SJ, Minger SL, Patel M, Taylor H, Black C, Burns CJ, Ekonomou A, Braude PR (2005) Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation ΔF508, using preimplantation genetic diagnosis. Reprod Biomed Online 10:390–397

    Article  PubMed  Google Scholar 

  • Polisca A, Orlandi R, Troisi A, Brecchia G, Zerani M, Boiti C, Zelli R (2013) Clinical efficacy of the Gn RH agonist (deslorelin) in dogs affected by benign prostatic hyperplasia and evaluation of prostatic blood flow by Doppler ultrasound. Reprod Domest Anim 48:673–680

    Article  CAS  PubMed  Google Scholar 

  • Porter V (2020) Mason’s world dictionary of livestock breeds, types and varieties. CABI, Wallingford

    Book  Google Scholar 

  • Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD (2017) Molecular markers for resistance against infectious diseases of economic importance. Vet World 10:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina VS, Kour A, Chakravarty AK, Vohra V (2020) Marker-assisted selection vis-à-vis bull fertility: coming full circle – a review. Mol Biol Rep 47(11):9123–9133

    Article  CAS  PubMed  Google Scholar 

  • Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J, Laskary A, Qi X, Massé S, Magtibay K, Kawajiri H (2019) Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem cell Rep 12:967–981

    Article  Google Scholar 

  • Rose TA, Bavister BD (1992) Effect of oocyte maturation medium on in vitro development of in vitro fertilized bovine embryos. Mol Reprod Dev 31:72–77

    Article  CAS  PubMed  Google Scholar 

  • Salisbury GW, VanDemark NL, Lodge JR (1978) Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company

    Google Scholar 

  • Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129:3533–3544

    Article  CAS  PubMed  Google Scholar 

  • Seidel GE Jr, Seidel SM (1991) Training manual for embryo transfer in cattle. FAO, Rome

    Google Scholar 

  • Seré C, Steinfeld H, Groenewold J. 1996. World livestock production systems

    Google Scholar 

  • Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO (1992) Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci 89:9225–9229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BD, Singh AK (2015) Sequence-based markers. In: Marker-assisted plant breeding: principles and practices. Springer India, New Delhi

    Chapter  Google Scholar 

  • Skidmore JA, Billah M, Allen WR (2002) Investigation of factors affecting pregnancy rate after embryo transfer in the dromedary camel. Reprod Fertil Dev 14:109–116

    Article  PubMed  Google Scholar 

  • Smith C (1988) Applications of embryo transfer in animal breeding. Theriogenology 29:203–212

    Article  Google Scholar 

  • Solter D (2004) Imprinting. Int J Dev Biol 42:951–954

    Google Scholar 

  • Song J, Yang D, Ruan J, Zhang J, Chen YE, Jie X (2017) Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting. Sci Rep 7:1–9

    CAS  Google Scholar 

  • Soto DA, Ross PJ (2016) Pluripotent stem cells and livestock genetic engineering. Transgenic Res 25:289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringfellow DA, Seidel SM (1998) Manual of the International Embryo Transfer Society. The Society, Champaign

    Google Scholar 

  • Talbot NC, Powell AM, Rexroad CE Jr (1995) In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol Reprod Dev 42:35–52

    Article  CAS  PubMed  Google Scholar 

  • Tan SL, Bennett S, Parsons J (1990) Surgical techniques of oocyte collection and embryo transfer. Br Med Bull 46:628–642

    Article  CAS  PubMed  Google Scholar 

  • Thalkar MG. Embryo transfer technology in cattle

    Google Scholar 

  • Tibary A, Anouassi A (1997) Artificial breeding and manipulation of reproduction in camelidae. In: Theriogenology in camelidae: anatomy, physiology, pathology and artificial breeding. Actes Editions, Rabat, pp 413–414

    Google Scholar 

  • Vettical BS, Hong SB, Umer MA, Wani NA (2019) Comparison of pregnancy rates with transfer of in vivo produced embryos derived using multiple ovulation and embryo transfer (MOET) with in vitro produced embryos by somatic cell nuclear transfer (SCNT) in the dromedary camel (Camelus dromedaries). Anim Reprod Sci 209:106132

    Article  CAS  PubMed  Google Scholar 

  • Wakchaure R, Ganguly S, Praveen PK, Kumar A, Sharma S, Mahajan T (2015) Marker assisted selection (MAS) in animal breeding: a review. J Drug Metab Toxicol 6:e127

    Article  CAS  Google Scholar 

  • Wang L, Duan E, Sung L-y, Jeong B-S, Yang X, Cindy Tian X (2005) Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 73:149–155

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tang X, Niu Y, Chen H, Li B, Li T, Zhang X, Hu Z, Zhou Q, Ji W (2007) Generation and characterization of rabbit embryonic stem cells. Stem Cells 25:481–489

    Article  CAS  PubMed  Google Scholar 

  • Wani NA, Billah M, Skidmore JA (2008) Studies on liquefaction and storage of ejaculated dromedary camel (Camelus dromedarius) semen. Anim Reprod Sci 109:309–318

    Article  CAS  PubMed  Google Scholar 

  • Wei JZ, Jiang QY, Jiang HS, Wei JW, Wei ZJ, Yu Z, Zhang SX, Wei YM (2010) A study on multiple ovulation and embryo transfer (MOET) technology in Australian Holstein cow. Guangxi Agric Sci 41:835–837

    Google Scholar 

  • Wells DN, Laible G, Tucker FC, Miller AL, Oliver JE, Xiang T, Forsyth JT, Berg MC, Cockrem K, L’Huillier PJ (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59:45–59

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Sales DI, Ashworth CJ (1985) The influence of variation in embryo stage and maternal hormone profiles on embryo survival in farm animals. Theriogenology 23:107–119

    Article  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997a) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997b) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Wright JM (1981) Non-surgical embryo transfer in cattle embryo-recipient interactions. Theriogenology 15:43–56

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AK, Tomar SS, Jha AK, Singh J (2017) Importance of molecular markers in livestock improvement: a review. Int J Agric Innov Res 5:614–622

    Google Scholar 

  • Yang YB, Lu KH (1990) The influence of bovine oocyte type on in vitro-fertilization and subsequent development in vitro. Theriogenology 33:355

    Article  Google Scholar 

  • Zakhartchenko V, Alberio R, Stojkovic M, Prelle K, Schernthaner W, Stojkovic P, Wenigerkind H, Wanke R, Düchler M, Steinborn R (1999) Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures. Mol Reprod Dev Inc Gamete Res 54:264–272

    Article  CAS  Google Scholar 

  • Zheng S, Wang X, Zhang S, Long J, Tao W, Li M, Wang D (2020) Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Southern catfish (Silurus meridionalis). Aquaculture 517:734783

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Microbiology, Sikkim University, and School of Life and Environmental Sciences, Deakin University, Geelong, Australia for providing the computational infrastructure and central library facilities for procuring references and plagiarism analysis (Turnitin: Plagiarism Detection Software).

Conflict of Interest Statement

The authors declare that the study was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, B., Chettri, D., Verma, A.K. (2021). Biotechnological Advancements in Livestock Production. In: Yata, V.K., Mohanty, A.K., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 54. Sustainable Agriculture Reviews, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-76529-3_3

Download citation

Publish with us

Policies and ethics