Skip to main content

Red Cells and the Kidney

  • Chapter
  • First Online:
Primer on Nephrology
  • 2000 Accesses

Abstract

Many red cell haematological disorders have significant renal sequelae. These are primarily related to conditions associated with acute or chronic intravascular haemolysis, which are either innate (e.g. sickle cell disease and glucose-6-phospahte dehydrogenase (G6PD) deficiency) or acquired (e.g. paroxysmal nocturnal haemoglobinuria (PNH) and malaria). Prevention of renal complications is largely focused on treatment of the underlying condition, but once established, acute kidney injury and chronic kidney disease are managed with renal replacement therapy including renal transplantation when indicated. Integrated care between haematologists and nephrologists is key to providing optimal patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381:142–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nath KA, Hebbel RP. Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol. 2015;11:161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE. Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hematol. 2013;88:116–9.

    Article  CAS  PubMed  Google Scholar 

  4. van Eps S. LW, Schouten, H, La Porte-Wijsman, LW, Struyker Boudier, AM: the influence of red blood cell transfusions on the hyposthenuria and renal hemodynamics of sickle cell anemia. Clin Chim Acta. 1967;17:449–61.

    Article  Google Scholar 

  5. de Jong PE, de Jong-Van Den Berg TW, Sewrajsingh GS, Schouten H, Donker AJ. Statius van Eps, LW: the influence of indomethacin on renal haemodynamics in sickle cell anaemia. Clin Sci (Lond). 1980;59:245–50.

    Article  Google Scholar 

  6. Pegelow CH, Colangelo L, Steinberg M, Wright EC, Smith J, Phillips G, Vichinsky E. Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med. 1997;102:171–7.

    Article  CAS  PubMed  Google Scholar 

  7. Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica. 2012;97:201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serjeant GR, Serjeant BE, Mason KP, Hambleton IR, Fisher C, Higgs DR. The changing face of homozygous sickle cell disease: 102 patients over 60 years. Int J Lab Hematol. 2009;31:585–96.

    Article  CAS  PubMed  Google Scholar 

  9. Quek L, Sharpe C, Dutt N, Height S, Allman M, Awogbade M, Rees DC, Zuckerman M, Thein SL. Acute human parvovirus B19 infection and nephrotic syndrome in patients with sickle cell disease. Br J Haematol. 2010;149:289–91.

    Article  PubMed  Google Scholar 

  10. Nakano D, Pollock D. New concepts in endothelin control of sodium balance. Clin Exp Pharmacol Physiol. 2011;

    Google Scholar 

  11. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol. 2011;6:274–80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mava Y, Ambe JP, Bello M, Watila I, Nottidge VA. Urinary tract infection in febrile children with sickle cell anaemia. West Afr J Med. 2011;30:268–72.

    CAS  PubMed  Google Scholar 

  13. Oteng-Ntim E, Ayensah B, Knight M, Howard J. Pregnancy outcome in patients with sickle cell disease in the UK--a national cohort study comparing sickle cell anaemia (HbSS) with HbSC disease. Br J Haematol. 2015;169:129–37.

    Article  PubMed  Google Scholar 

  14. Alvarez O, Rodriguez MM, Jordan L, Sarnaik S. Renal medullary carcinoma and sickle cell trait: a systematic review. Pediatr Blood Cancer. 2015;62:1694–9.

    Article  PubMed  Google Scholar 

  15. Sharpe CC, Thein SL. How I treat renal complications in sickle cell disease. Blood. 2014;123:3720–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lebensburger JD, Palabindela P, Howard TH, Feig DI, Aban I, Askenazi DJ. Prevalence of acute kidney injury during pediatric admissions for acute chest syndrome. Pediatr Nephrol. 2016;31:1363–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordeuk VR, Sachdev V, Taylor JG, Gladwin MT, Kato G, Castro OL. Relative systemic hypertension in patients with sickle cell disease is associated with risk of pulmonary hypertension and renal insufficiency. Am J Hematol. 2008;83:15–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saraf SL, Shah BN, Zhang X, Han J, Tayo BO, Abbasi T, Ostrower A, Guzman E, Molokie RE, Gowhari M, Hassan J, Jain S, Cooper RS, Machado RF, Lash JP, Gordeuk VR. APOL1, alpha-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica. 2017;102:e1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaw C, Sharpe CC. Could sickle cell trait be a predisposing risk factor for CKD? Nephrol Dial Transplant. 2010;25:2403–5.

    Article  PubMed  Google Scholar 

  20. Naik RP, Derebail VK, Grams ME, Franceschini N, Auer PL, Peloso GM, Young BA, Lettre G, Peralta CA, Katz R, Hyacinth HI, Quarells RC, Grove ML, Bick AG, Fontanillas P, Rich SS, Smith JD, Boerwinkle E, Rosamond WD, Ito K, Lanzkron S, Coresh J, Correa A, Sarto GE, Key NS, Jacobs DR, Kathiresan S, Bibbins-Domingo K, Kshirsagar AV, Wilson JG, Reiner AP. Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans. JAMA. 2014;312:2115–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hicks PJ, Langefeld CD, Lu L, Bleyer AJ, Divers J, Nachman PH, Derebail VK, Bowden DW, Freedman BI. Sickle cell trait is not independently associated with susceptibility to end-stage renal disease in African Americans. Kidney Int. 2011;80:1339–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vasavda N, Gutierrez L, House MJ, Drasar E, St Pierre TG, Thein SL. Renal iron load in sickle cell disease is influenced by severity of haemolysis. Br J Haematol. 2012;157:599–605.

    Article  CAS  PubMed  Google Scholar 

  23. Meeks D, Navaratnarajah A, Drasar E, Jaffer O, Wilkins CJ, Thein SL, Sharpe CC. Increased prevalence of renal cysts in patients with sickle cell disease. BMC Nephrol. 2017;18:298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Maigne G, Ferlicot S, Galacteros F, Belenfant X, Ulinski T, Niaudet P, Ronco P, Godeau B, Durrbach A, Sahali S, Lang P, Lambotte O, Audard V. Glomerular lesions in patients with sickle cell disease. Medicine (Baltimore). 2010;89:18–27.

    Article  Google Scholar 

  25. Alvarez O, Nottage K, Simpson LM, Wood J, Davis BR, Fuh B, Sarnaik S, Aygun B, Helton K, Ware RE. Kidney function of transfused children with sickle cell anemia: baseline data from the TWiTCH study with comparison to non-transfused cohorts. Am J Hematol. 2017;92:E637–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Becton LJ, Kalpatthi RV, Rackoff E, Disco D, Orak JK, Jackson SM, Shatat IF. Prevalence and clinical correlates of microalbuminuria in children with sickle cell disease. Pediatr Nephrol. 2010;25:1505–11.

    Article  PubMed  Google Scholar 

  27. de Montalembert M, Brousse V, Elie C, Bernaudin F, Shi J, Landais P. Long-term hydroxyurea treatment in children with sickle cell disease: tolerance and clinical outcomes. Haematologica. 2006;91:125–8.

    PubMed  Google Scholar 

  28. Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, Sinopoulou K, Balassopoulou A, Loukopoulos D, Terpos E. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood. 2010;115:2354–63.

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, Thompson B, Howard T, Iyer RV, Rana SR, Rogers ZR, Sarnaik SA, Thornburg CD, Ware RE. Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled baby hug clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer. 2012;

    Google Scholar 

  30. Hsieh MM, Kang EM, Fitzhugh CD, Link MB, Bolan CD, Kurlander R, Childs RW, Rodgers GP, Powell JD, Tisdale JF. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med. 2009;361:2309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horwitz ME, Spasojevic I, Morris A, Telen M, Essell J, Gasparetto C, Sullivan K, Long G, Chute J, Chao N, Rizzieri D. Fludarabine-based nonmyeloablative stem cell transplantation for sickle cell disease with and without renal failure: clinical outcome and pharmacokinetics. Biol Blood Marrow Transplant. 2007;13:1422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasongko TH, Nagalla S, Ballas SK. Angiotensin-converting enzyme (ACE) inhibitors for proteinuria and microalbuminuria in people with sickle cell disease. Cochrane Database Syst Rev. 2013:CD009191.

    Google Scholar 

  33. Little JA, McGowan VR, Kato GJ, Partovi KS, Feld JJ, Maric I, Martyr S, Taylor JG, Machado RF, Heller T, Castro O, Gladwin MT. Combination erythropoietin-hydroxyurea therapy in sickle cell disease: experience from the National Institutes of Health and a literature review. Haematologica. 2006;91:1076–83.

    CAS  PubMed  Google Scholar 

  34. Powars DR, Elliott-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, Johnson C. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med. 1991;115:614–20.

    Article  CAS  PubMed  Google Scholar 

  35. Saxena AK, Panhotra BR, Al-Arabi Al-Ghamdi AM. End-stage sickle cell nephropathy: determinants of reduced survival of patients on Long-term Hemodialysis. Saudi J Kidney Dis Transpl. 2004;15:174–5.

    PubMed  Google Scholar 

  36. Abbott KC, Hypolite IO, Agodoa LY. Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival. Clin Nephrol. 2002;58:9–15.

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen L, Canoui-Poitrine F, Jais JP, Dahmane D, Bartolucci P, Bentaarit B, Gellen-Dautremer J, Remy P, Kofman T, Matignon M, Suberbielle C, Jacquelinet C, Wagner-Ballon O, Sahali D, Lang P, Damy T, Galacteros F, Grimbert P, Habibi A, Audard V. Morbidity and mortality of sickle cell disease patients starting intermittent haemodialysis: a comparative cohort study with non- sickle dialysis patients. Br J Haematol. 2016;174:148–52.

    Article  CAS  PubMed  Google Scholar 

  38. Scheinman JI. Sickle cell disease and the kidney. Nat Clin Pract Nephrol. 2009;5:78–88.

    Article  PubMed  Google Scholar 

  39. Sharpe CC, Thein SL. Sickle cell nephropathy - a practical approach. Br J Haematol. 2011;155:287–97.

    Article  CAS  PubMed  Google Scholar 

  40. Kim L, Garfinkel MR, Chang A, Kadambi PV, Meehan SM. Intragraft vascular occlusive sickle crisis with early renal allograft loss in occult sickle cell trait. Hum Pathol. 2011;

    Google Scholar 

  41. Willis J, Awogbade M, Howard J, Breen C, Abbas A, Harber M, Shindi A, Andrews P, Galliford J, Shah S, Sharpe CC. Outcomes following kidney transplantation in patients with sickle cell disease with and without exchange blood transfusion. Kidney Int Suppl.

    Google Scholar 

  42. Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program. 2009:26–34.

    Google Scholar 

  43. Lai ME, Spiga A, Vacquer S, Carta MP, Corrias C, Ponticelli C. Renal function in patients with beta-thalassaemia major: a long-term follow-up study. Nephrol Dial Transplant. 2012;

    Google Scholar 

  44. Irani MS, Richards C. Hemolytic transfusion reaction due to anti-IH. Transfusion. 2011;51:2676–8.

    Article  PubMed  Google Scholar 

  45. de Latour RP, Mary JY, Salanoubat C, Terriou L, Etienne G, Mohty M, Roth S, de Guibert S, Maury S, Cahn JY, Socie G. French Society of, H, French association of young, H: Paroxysmal nocturnal hemoglobinuria: natural history of disease subcategories. Blood. 2008;112:3099–106.

    Article  PubMed  CAS  Google Scholar 

  46. Qi K, Zhang XG, Liu SW, Yin Z, Chen XM, Wu D. Reversible acute kidney injury caused by paroxysmal nocturnal hemoglobinuria. Am J Med Sci. 2011;341:68–70.

    Article  PubMed  Google Scholar 

  47. Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, Wittwer CT, Richards SJ. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78:211–30.

    PubMed  Google Scholar 

  48. Rachidi S, Musallam KM, Taher AT. A closer look at paroxysmal nocturnal hemoglobinuria. Eur J Intern Med. 2010;21:260–7.

    Article  PubMed  Google Scholar 

  49. Rimola J, Martin J, Puig J, Darnell A, Massuet A. The kidney in paroxysmal nocturnal haemoglobinuria: MRI findings. Br J Radiol. 2004;77:953–6.

    Article  CAS  PubMed  Google Scholar 

  50. de Fontbrune S. F, Peffault de Latour, R: ten years of clinical experience with Eculizumab in patients with paroxysmal nocturnal Hemoglobinuria. Semin Hematol. 2018;55:124–9.

    Article  Google Scholar 

  51. Barsoum RS. Malarial acute renal failure. J Am Soc Nephrol: JASN. 2000;11:2147–54.

    Article  PubMed  Google Scholar 

  52. Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 2007;21:267–83.

    Article  CAS  PubMed  Google Scholar 

  53. Schuurman M, van Waardenburg D, Da Costa J, Niemarkt H, Leroy P. Severe hemolysis and methemoglobinemia following fava beans ingestion in glucose-6-phosphatase dehydrogenase deficiency: case report and literature review. Eur J Pediatr. 2009;168:779–82.

    Article  PubMed  Google Scholar 

  54. Beutler E. G6PD deficiency. Blood. 1994;84:3613–36.

    Article  CAS  PubMed  Google Scholar 

  55. Society RP. British national formulary. BMJ Group and Pharmaceutical Press; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire C. Sharpe .

Editor information

Editors and Affiliations

Patient Information and Guidelines

Patient Information and Guidelines

Standards for the clinical care of adults with sickle cell disease 2018-09-16.

https://www.sicklecellsociety.org/sicklecellstandards/

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharpe, C.C. (2022). Red Cells and the Kidney. In: Harber, M. (eds) Primer on Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-76419-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76419-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76418-0

  • Online ISBN: 978-3-030-76419-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics