Skip to main content

Nano- and Microparticles and Their Role in Inflammation and Immune Response: Focus on Neutrophil Extracellular Traps

  • Chapter
  • First Online:
Biomedical Nanomaterials

Abstract

Nano- and microparticles have become a normal part of our life, starting from medical drugs and cosmetics and ending in the television screens. Many of the nanoparticles are quite dangerous since the materials they use are not easily compatible with human tissue and provoke inflammation and immune responses. However, our body has developed the response on how to cope with those nanoparticles which are causing damaging effects to cells and tissues. This response is mediated by the neutrophilic granulocytes producing neutrophil extracellular traps—a weapon used to isolate and sequester particular matter in the safe deposits in the body. This chapter focuses on the mechanisms of how nanoparticles interact with neutrophils. It will provide an example of such interaction for main groups of nanoparticles—naturally occurring in the body, those formed during pathological conditions, and artificial pollutants. Examples of beneficial use of nanoparticle-induced inflammation are described for novel nanoadjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Abs:

Absorbance

AKI:

Acute kidney inflammation

FL:

Fluorescence

MPO:

Myeloperoxidase

MPTP:

Mitochondria permeability transition pore

MSU:

Monosodium urate crystals

NE:

Neutrophil elastase

NETs:

Neutrophil extracellular traps

NOX-2:

NADPH-oxidase 2

NP:

Nanoparticle

PAD4:

Peptidylarginine deiminase 4

Pfif:

Peptidylprolyl isomerase F

PMN:

Polymorphonuclear neutrophilic granulocytes

RBC:

Red blood cells

ROS:

Reactive oxygen species

References

  • Admirand, W. H., & Small, D. M. (1968). The physicochemical basis of cholesterol gallstone formation in man. The Journal of Clinical Investigation, 47(5), 1043–1052. https://doi.org/10.1172/JCI105794

  • Agarwal, R., Awasthi, A., Singh, N., Mittal, S. K., & Gupta, P. K. (2013). Epidemiological study on healthy subjects affected by agriculture crop-residue burning episodes and its relation with their pulmonary function tests. International Journal of Environmental Health Research, 23(4), 281–295. https://doi.org/10.1080/09603123.2012.733933

    Article  Google Scholar 

  • Agudo-Canalejo, J., & Lipowsky, R. (2015). Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano, 9(4), 3704–3720. https://doi.org/10.1021/acsnano.5b01285

    Article  Google Scholar 

  • Alberts, B., Johnson, A. D., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell: Sixth international student edition. Garland Science, Taylor and Francis Group.

    Google Scholar 

  • Altinbasak, I., Jijie, R., Barras, A., Golba, B., Sanyal, R., Bouckaert, J., Drider, D., Bilyy, R., Dumych, T., Paryzhak, S., Vovk, V., Boukherroub, R., Sanyal, A., & Szunerits, S. (2018). Reduced graphene-oxide-embedded polymeric nanofiber mats: An “on-demand” photothermally triggered antibiotic release platform. ACS Applied Materials & Interfaces, 10(48), 41098–41106. https://doi.org/10.1021/acsami.8b14784

    Article  Google Scholar 

  • Anders, H.-J., Mulay, S. R., Herrmann, M., Bilyy, R., & Gabibov, G. G. (2019). Editorial on the research topic: Nano-and microparticle-induced cell death, inflammation and immune responses. Frontiers in Immunology, 10, 844.

    Article  Google Scholar 

  • Baylor, N. W., Egan, W., & Richman, P. (2002). Aluminum salts in vaccines – US perspective. Vaccine, 20(Suppl. 3), 18–23. https://doi.org/10.1016/S0264-410X(02)00166-4

    Article  Google Scholar 

  • Belaaouaj, A. A., Kim, K. S., & Shapiro, S. D. (2000). Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science, 289(5482), 1185–1187. https://doi.org/10.1126/science.289.5482.1185

    Article  Google Scholar 

  • Biermann, M. H. C., Podolska, M. J., Knopf, J., Reinwald, C., Weidner, D., Maueröder, C., Hahn, J., Kienhöfer, D., Barras, A., Boukherroub, R., Szunerits, S., Bilyy, R., Hoffmann, M., Zhao, Y., Schett, G., Herrmann, M., & Munoz, L. E. (2016). Oxidative burst-dependent NETosis is implicated in the resolution of necrosis-associated sterile inflammation. Frontiers in Immunology, 7, 557. https://doi.org/10.3389/fimmu.2016.00557

    Article  Google Scholar 

  • Bila, G., Peshkova, S., Dumych, T., & Bilyy, R. (2019). Natural cholesterol nanocrystals in gall material and their interaction with neutrophilic granulocytes. PhoBiA Annual Nanophotonics International Conference, 1, 62.

    Google Scholar 

  • Bila, G., Peshkova, S., Vovk, V., Borysov, A., Borisova, T., & Bilyy, R. (2020). Soot-derived carbon nanoparticles are encapsulated in the lungs upon inhalation. In S. G. Vari (Ed.), RECOOP bridges in life science annual conference (p. 015). RECOOP HST Assosiation.

    Google Scholar 

  • Bilyy, R., Fedorov, V., Vovk, V., Leppkes, M., Dumych, T., Chopyak, V., Schett, G., & Herrmann, M. (2016). Neutrophil extracellular traps form a barrier between necrotic and viable areas in acute abdominal inflammation. Frontiers in Immunology, 7, 424. https://doi.org/10.3389/fimmu.2016.00424

    Article  Google Scholar 

  • Bilyy, R., & Lutsyk, A. D. (2010). A brief account of Julius Planer’s life and research. Condensed Matter Physics, 13(3), 37003. https://doi.org/10.5488/cmp.13.37003

    Article  Google Scholar 

  • Bilyy, R., Paryzhak, S., Turcheniuk, K., Dumych, T., Barras, A., Boukherroub, R., Wang, F., Yushin, G., & Szunerits, S. (2019). Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines. Materials Today, 22, 58–66. https://doi.org/10.1016/j.mattod.2018.10.034

    Article  Google Scholar 

  • Boeltz, S., Amini, P., Anders, H. J., Andrade, F., Bilyy, R., Chatfield, S., Cichon, I., Clancy, D. M., Desai, J., Dumych, T., Dwivedi, N., Gordon, R. A., Hahn, J., Hidalgo, A., Hoffmann, M. H., Kaplan, M. J., Knight, J. S., Kolaczkowska, E., Kubes, P., … Herrmann, M. (2019). To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 26(3), 395–408. https://doi.org/10.1038/s41418-018-0261-x

    Article  Google Scholar 

  • Boeltz, S., Muñoz, L. E., Fuchs, T. A., & Herrmann, M. (2017). Neutrophil extracellular traps open the Pandora’s box in severe malaria. Frontiers in Immunology, 8, 2–5. https://doi.org/10.3389/fimmu.2017.00874

    Article  Google Scholar 

  • Borisova, T., Dekaliuk, M., Pozdnyakova, N., Pastukhov, A., Dudarenko, M., Borysov, A., Vari, S. G., & Demchenko, A. P. (2017). Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor. Environmental Science and Pollution Research International, 24(21), 17688–17700. https://doi.org/10.1007/s11356-017-9414-6

    Article  Google Scholar 

  • Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521. https://doi.org/10.1182/blood.v89.10.3503

    Article  Google Scholar 

  • Brinkmann, V. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. https://doi.org/10.1126/science.1092385

    Article  Google Scholar 

  • Brinkmann, V., & Zychlinsky, A. (2012). Neutrophil extracellular traps: Is immunity the second function of chromatin? Journal of Cell Biology, 198(5), 773–783. https://doi.org/10.1083/jcb.201203170

    Article  Google Scholar 

  • Büchner, N., Ale-Agha, N., Jakob, S., Sydlik, U., Kunze, K., Unfried, K., Altschmied, J., & Haendeler, J. (2013). Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes. Experimental Gerontology, 48(1), 8–16. https://doi.org/10.1016/j.exger.2012.03.017

    Article  Google Scholar 

  • Chang, C.-C., Chen, C.-Y., Chiu, H.-F., Dai, S.-X., Liu, M.-Y., & Yang, C.-Y. (2011). Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice. Inhalation Toxicology, 23(10), 616–626. https://doi.org/10.3109/08958378.2011.598965

    Article  Google Scholar 

  • Chu, C., Zhou, L., Xie, H., Pei, Z., Zhang, M., Wu, M., Zhang, S., Wang, L., Zhao, C., Shi, L., Zhang, N., Niu, Y., Zheng, Y., & Zhang, R. (2019). Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. International Journal of Nanomedicine, 14, 2995–3013. https://doi.org/10.2147/IJN.S198376

    Article  Google Scholar 

  • Claushuis, T. A. M., van der Donk, L. E. H., Luitse, A. L., van Veen, H. A., van der Wel, N. N., van Vught, L. A., Roelofs, J. J. T. H., de Boer, O. J., Lankelma, J. M., Boon, L., de Vos, A. F., van ‘t Veer, C., & van der Poll, T. (2018). Role of peptidylarginine deiminase-4 in neutrophil extracellular trap formation and host defense during Klebsiella pneumoniae – Induced pneumonia-derived sepsis. The Journal of Immunology, 201(4), 1241–1252. https://doi.org/10.4049/jimmunol.1800314

    Article  Google Scholar 

  • Dancey, J. T., Deubelbeiss, K. A., Harker, L. A., & Finch, C. A. (1976). Neutrophil kinetics in man. Journal of Clinical Investigation, 58(3), 705–715. https://doi.org/10.1172/JCI108517

    Article  Google Scholar 

  • Daniel, C., Leppkes, M., Muñoz, L. E., Schley, G., Schett, G., & Herrmann, M. (2019). Extracellular DNA traps in inflammation, injury and healing. Nature Reviews Nephrology, 15(9), 559–575. https://doi.org/10.1038/s41581-019-0163-2

    Article  Google Scholar 

  • Desai, J., Foresto-Neto, O., Honarpisheh, M., Steiger, S., Nakazawa, D., Popper, B., Buhl, E. M., Boor, P., Mulay, S. R., & Anders, H. J. (2017). Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-15106-0

    Article  Google Scholar 

  • Digne, M., Sautet, P., Raybaud, P., Toulhoat, H., & Artacho, E. (2002). Structure and stability of aluminum hydroxides: A theoretical study. The Journal of Physical Chemistry B, 106(20), 5155–5162. https://doi.org/10.1021/jp014182a

    Article  Google Scholar 

  • Douda, D. N., Khan, M. A., Grasemann, H., & Palaniyar, N. (2015). SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. PNAS, 112(9), 2817–2822. https://doi.org/10.1073/pnas.1414055112

    Article  Google Scholar 

  • Jiménez-Alcázar, M., Rangaswamy, C., Panda, R., Bitterling, J., Simsek, Y. J., Long, A. T., Bilyy, R., Krenn, V., Renné, C., Renné, T., Kluge, S., Panzer, U., Mizuta, R., Mannherz, H. G., Kitamura, D., Herrmann, M., Napirei, M., & Fuchs, T. A. (2017). Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science, 358(6367), 1202–1206. https://doi.org/10.1126/science.aam8897

    Article  Google Scholar 

  • Kenny, E. F., Herzig, A., Krüger, R., Muth, A., Mondal, S., Thompson, P. R., Brinkmann, V., von Bernuth, H., & Zychlinsky, A. (2017). Diverse stimuli engage different neutrophil extracellular trap pathways. eLife, 6, 1–21. https://doi.org/10.7554/eLife.24437

    Article  Google Scholar 

  • Lei, D., Benson, J., Magasinski, A., Berdichevsky, G., & Yushin, G. (2017). Transformation of bulk alloys to oxide nanowires. Science (New York, N.Y.), 355(6322), 267–271. https://doi.org/10.1126/science.aal2239

    Article  Google Scholar 

  • Leppkes, M., Maueröder, C., Hirth, S., Nowecki, S., Günther, C., Billmeier, U., Paulus, S., Biermann, M., Munoz, L. E., Hoffmann, M., Wildner, D., Croxford, A. L., Waisman, A., Mowen, K., Jenne, D. E., Krenn, V., Mayerle, J., Lerch, M. M., Schett, G., … Becker, C. (2016). Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nature Communications, 7(1), 10973. https://doi.org/10.1038/ncomms10973

    Article  Google Scholar 

  • Li, C., Ye, R., Bouckaert, J., Zurutuza, A., Drider, D., Dumych, T., Paryzhak, S., Vovk, V., Bilyy, R. O., Melinte, S., Li, M., Boukherroub, R., & Szunerits, S. (2017). Flexible nanoholey patches for antibiotic-free treatments of skin infections. ACS Applied Materials & Interfaces, 9(42), 36665–36674. https://doi.org/10.1021/acsami.7b12949

    Article  Google Scholar 

  • Li, P., Li, M., Lindberg, M. R., Kennett, M. J., Xiong, N., & Wang, Y. (2010). PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of Experimental Medicine, 207(9), 1853–1862. https://doi.org/10.1084/jem.20100239

    Article  Google Scholar 

  • Martillo, M. A., Nazzal, L., & Crittenden, D. B. (2014). The crystallization of monosodium urate. Current Rheumatology Reports, 16(2), 400. https://doi.org/10.1007/s11926-013-0400-9

    Article  Google Scholar 

  • Meldrum, K., Guo, C., Marczylo, E. L., Gant, T. W., Smith, R., & Leonard, M. O. (2017). Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Particle and Fibre Toxicology, 14(1), 1–35. https://doi.org/10.1186/s12989-017-0228-y

    Article  Google Scholar 

  • Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A., & Papayannopoulos, V. (2014). Myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports, 8(3), 883–896. https://doi.org/10.1016/j.celrep.2014.06.044

    Article  Google Scholar 

  • Mitsios, A., Arampatzioglou, A., Arelaki, S., Mitroulis, I., & Ritis, K. (2017). NETopathies? Unraveling the dark side of old diseases through neutrophils. Frontiers in Immunology, 7, 1–13. https://doi.org/10.3389/fimmu.2016.00678

    Article  Google Scholar 

  • Mulay, S. R., Desai, J., Kumar, S. V., Eberhard, J. N., Thomasova, D., Romoli, S., Grigorescu, M., Kulkarni, O. P., Popper, B., Vielhauer, V., Zuchtriegel, G., Reichel, C., Brasen, J. H., Romagnani, P., Bilyy, R., Munoz, L. E., Herrmann, M., Liapis, H., Krautwald, S., … Anders, H.-J. (2016). Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 7, 10274. https://doi.org/10.1038/ncomms10274

    Article  Google Scholar 

  • Mulay, S. R., Honarpisheh, M. M., Foresto-Neto, O., Shi, C., Desai, J., Zhao, Z. B., Marschner, J. A., Popper, B., Buhl, E. M., Boor, P., Linkermann, A., Liapis, H., Bilyy, R., Herrmann, M., Romagnani, P., Belevich, I., Jokitalo, E., Becker, J. U., & Anders, H.-J. (2019). Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. Journal of the American Society of Nephrology, 30(10), 1857–1869. https://doi.org/10.1681/ASN.2018121218

    Article  Google Scholar 

  • Mulay, S. R., Kulkarni, O. P., Rupanagudi, K. V., Migliorini, A., Darisipudi, M. N., Vilaysane, A., Muruve, D., Shi, Y., Munro, F., Liapis, H., & Anders, H. J. (2013). Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. Journal of Clinical Investigation, 123(1), 236–246. https://doi.org/10.1172/JCI63679

    Article  Google Scholar 

  • Muñoz, L. E., Bilyy, R., Biermann, M. H. C., Kienhöfer, D., Maueröder, C., Hahn, J., Brauner, J. M., Weidner, D., Chen, J., Scharin-Mehlmann, M., Janko, C., Friedrich, R. P., Mielenz, D., Dumych, T., Lootsik, M. D., Schauer, C., Schett, G., Hoffmann, M., Zhao, Y., & Herrmann, M. (2016). Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. PNAS, 113(40), E5856–E5865. https://doi.org/10.1073/pnas.1602230113

    Article  Google Scholar 

  • Muñoz, L. E., Boeltz, S., Bilyy, R., Schauer, C., Mahajan, A., Widulin, N., Grüneboom, A., Herrmann, I., Boada, E., Rauh, M., Krenn, V., Biermann, M. H. C., Podolska, M. J., Hahn, J., Knopf, J., Maueröder, C., Paryzhak, S., Dumych, T., Zhao, Y., … Herrmann, M. (2019). Neutrophil extracellular traps initiate gallstone formation. Immunity, 51(3), 443–450. https://doi.org/10.1016/j.immuni.2019.07.002

    Article  Google Scholar 

  • Niranjan, R., & Thakur, A. K. (2017). The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Frontiers in Immunology, 8, 1–20. https://doi.org/10.3389/fimmu.2017.00763

    Article  Google Scholar 

  • Papayannopoulos, V., Metzler, K. D., Hakkim, A., & Zychlinsky, A. (2010). Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology, 191(3), 677–691. https://doi.org/10.1083/jcb.201006052

    Article  Google Scholar 

  • Parker, H., & Winterbourn, C. C. (2012). Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Frontiers in Immunology, 3, 1–6. https://doi.org/10.3389/fimmu.2012.00424

    Article  Google Scholar 

  • Paryzhak, S., Dumych, T., Mahorivska, I., Boichuk, M., Bila, G., Peshkova, S., Nehrych, T., & Bilyy, R. (2018). Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity, 51(6), 297–303. https://doi.org/10.1080/08916934.2018.1514390

    Article  Google Scholar 

  • Paryzhak, S., Dumych, T. I., Peshkova, S. M., Bila, E. E., Lutsyk, A. D., Barras, A., Boukherroub, R., Szunerits, S., & Bilyy, R. O. (2019). Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues. Ukrainian Biochemical Journal, 91(2), 41–50. https://doi.org/10.15407/UBJ91.02.041

    Article  Google Scholar 

  • Podolska, M. J., Mahajan, A., Knopf, J., Hahn, J., Boeltz, S., Munoz, L., Bilyy, R., & Herrmann, M. (2018). Autoimmune, rheumatic, chronic inflammatory diseases: Neutrophil extracellular traps on parade. Autoimmunity, 51(6), 281–287. https://doi.org/10.1080/08916934.2018.1519804

    Article  Google Scholar 

  • Prylutska, S., Bilyy, R., Overchuk, M., Bychko, A., Andreichenko, K., Stoika, R., Rybalchenko, V., Prylutskyy, Y., Tsierkezos, N. G., & Ritter, U. (2012). Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. Journal of Biomedical Nanotechnology, 8(3), 522–527. https://doi.org/10.1166/jbn.2012.1404

    Article  Google Scholar 

  • Reinwald, C., Schauer, C., Csepregi, J. Z., Kienhöfer, D., Weidner, D., Malissen, M., Mocsai, A., Schett, G., Herrmann, M., & Hoffmann, M. (2017). Erratum: Reply to “Neutrophils are not required for resolution of acute gouty arthritis in mice”. Nature Medicine, 23(4), 526–526. https://doi.org/10.1038/nm0417-526b

    Article  Google Scholar 

  • Saber, A. T., Lamson, J. S., Jacobsen, N. R., Ravn-Haren, G., Hougaard, K. S., Nyendi, A. N., Wahlberg, P., Madsen, A. M., Jackson, P., Wallin, H., & Vogel, U. (2013). Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS One, 8(7), e69020. https://doi.org/10.1371/journal.pone.0069020

    Article  Google Scholar 

  • Schauer, C., Janko, C., Munoz, L. E., Zhao, Y., Kienhöfer, D., Frey, B., Lell, M., Manger, B., Rech, J., Naschberger, E., Holmdahl, R., Krenn, V., Harrer, T., Jeremic, I., Bilyy, R., Schett, G., Hoffmann, M., & Herrmann, M. (2014). Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nature Medicine, 20(5), 511–517. https://doi.org/10.1038/nm.3547

    Article  Google Scholar 

  • Schett, G., Schauer, C., Hoffmann, M., & Herrmann, M. (2015). Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD Open, 1(1), e000046. https://doi.org/10.1136/rmdopen-2015-000046

    Article  Google Scholar 

  • Schorn, C., Frey, B., Lauber, K., Janko, C., Strysio, M., Keppeler, H., Gaipl, U. S., Voll, R. E., Springer, E., Munoz, L. E., Schett, G., & Herrmann, M. (2011). Sodium overload and water influx activate the NALP3 inflammasome. Journal of Biological Chemistry, 286(1), 35–41. https://doi.org/10.1074/jbc.M110.139048

    Article  Google Scholar 

  • Silvestre-Roig, C., Hidalgo, A., & Soehnlein, O. (2016). Neutrophil heterogeneity: Implications for homeostasis and pathogenesis. Blood, 127(18), 2173–2181. https://doi.org/10.1182/blood-2016-01-688887

    Article  Google Scholar 

  • Song, Y., Li, X., & Du, X. (2009). Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. European Respiratory Journal, 34(3), 559–567. https://doi.org/10.1183/09031936.00178308

    Article  Google Scholar 

  • Stephen, J., Scales, H. E., Benson, R. A., Erben, D., Garside, P., & Brewer, J. M. (2017). Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccines, 2(1), 1. https://doi.org/10.1038/s41541-016-0001-5

    Article  Google Scholar 

  • Sun, B., Ji, Z., Liao, Y.-P., Wang, M., Wang, X., Dong, J., Chang, C. H., Li, R., Zhang, H., Nel, A. E., & Xia, T. (2013). Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano, 7(12), 10834–10849. https://doi.org/10.1021/nn404211j

    Article  Google Scholar 

  • Takei, H., Araki, A., Watanabe, H., Ichinose, A., & Sendo, F. (1996). Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. Journal of Leukocyte Biology, 59(2), 229–240.

    Article  Google Scholar 

  • Tausche, A. K., Unger, S., Richter, K., Wunderlich, C., Grässler, J., Roch, B., & Schröder, H. E. (2006). Hyperuricemia and gout: Diagnosis and therapy. Der Internist, 47(5), 509–520; quiz 521. https://doi.org/10.1007/s00108-006-1578-y

    Article  Google Scholar 

  • Turcheniuk, K., Dumych, T., Bilyy, R., Turcheniuk, V., Bouckaert, J., Vovk, V., Chopyak, V., Zaitsev, V., Mariot, P., Prevarskaya, N., Boukherroub, R., & Szunerits, S. (2016). Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Advances, 6(2), 1600–1610. https://doi.org/10.1039/C5RA24662H

    Article  Google Scholar 

  • Vinogradov, A. V., & Vinogradov, V. V. (2014). Low-temperature sol-gel synthesis of crystalline materials. RSC Advances, 4(86), 45903–45919. https://doi.org/10.1039/c4ra04454a

    Article  Google Scholar 

  • von Brühl, M.-L., Stark, K., Steinhart, A., Chandraratne, S., Konrad, I., Lorenz, M., Khandoga, A., Tirniceriu, A., Coletti, R., Köllnberger, M., Byrne, R. A., Laitinen, I., Walch, A., Brill, A., Pfeiler, S., Manukyan, D., Braun, S., Lange, P., Riegger, J., … Massberg, S. (2012). Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. The Journal of Experimental Medicine, 209(4), 819–835. https://doi.org/10.1084/jem.20112322

    Article  Google Scholar 

  • Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., Hayama, R., Leonelli, L., Han, H., Grigoryev, S. A., Allis, C. D., & Coonrod, S. A. (2009). Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. Journal of Cell Biology, 184(2), 205–213. https://doi.org/10.1083/jcb.200806072

    Article  Google Scholar 

  • Winterbourn, C. C., & Kettle, A. J. (2013). Redox reactions and microbial killing in the neutrophil phagosome. Antioxidants and Redox Signaling, 18(6), 642–660. https://doi.org/10.1089/ars.2012.4827

    Article  Google Scholar 

  • Yipp, B. G., & Kubes, P. (2013). NETosis: How vital is it? Blood, 122(16), 2784–2794. https://doi.org/10.1182/blood-2013-04-457671

    Article  Google Scholar 

  • Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., & Simon, H. U. (2009). Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death and Differentiation, 16(11), 1438–1444. https://doi.org/10.1038/cdd.2009.96

    Article  Google Scholar 

Download references

Acknowledgement

We dedicate this work in memory of Sofia Peshkova.

We thank Prof. Martin Herrmann, Prof. Sabine Szunerits, Prof. Gleb Yushin, Dr. Kostiantyn Turcheniuk, and Dr. Luis Munoz for their valuable ideas and discussions.

This work was financially supported by Cedars Sinai Medical Center’s International Research and Innovation in Medicine Program, the Association for Regional Cooperation in the Fields of Health, Science and Technology (RECOOP HST Association) RCSS grant 020, and BMYSRG 015; Grant of Ministry of Healthcare of Ukraine 0119U101338 and National Research Foundation of Ukraine 2020.02/0131; Volkswagen-Stiftung grant No 97744; Sila Nanotechnologies, Inc.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreements No 872331 NoBiasFluors and 861878 NeutroCure. Servier Medical Art is acknowledged as a source of some illustrative material.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bila, G., Rabets, A., Bilyy, R. (2022). Nano- and Microparticles and Their Role in Inflammation and Immune Response: Focus on Neutrophil Extracellular Traps. In: Stoika, R.S. (eds) Biomedical Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-030-76235-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76235-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76234-6

  • Online ISBN: 978-3-030-76235-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics