Skip to main content

Operator Formalism of Gauge Theory

  • Chapter
  • First Online:
Instanton Counting, Quantum Geometry and Algebra

Part of the book series: Mathematical Physics Studies ((MPST))

  • 772 Accesses

Abstract

We have discussed classical and quantum geometric aspects of \(\mathcal {N} = 2\) gauge theory in four dimensions in the relation to various fields of physics and mathematics. One of the key ingredients in such aspects is the non-perturbative symmetry of gauge theory incorporated by instantons, i.e., covariance of path integral partition function under the adding/removing-instanton operation. In general, symmetry of the system is rephrased as the invariance (covariance) under the corresponding transformation, which is described as a group action, and we would be able to discuss the algebraic structure from the infinitesimal version of the transformation (group action). The purpose of this Part III is to explore the algebraic structure associated with the non-perturbative symmetry of gauge theory, namely the symmetry algebra of the instanton creation and annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this Chapter, we will mostly use the K-theory (5d \(\mathcal {N} = 1\) theory on a circle) convention.

  2. 2.

    We also denote the partition function contribution associated with the instanton configuration \(\mathcal {X}\) by \(Z_{\mathcal {X}} = Z[\mathcal {X}]\).

  3. 3.

    This is similar to the Fourier transformation: In the presence of the factor \(\mathrm {e}^{\mathrm {i}p x}\), the multiplication of the variable p is equivalent to the derivative with the x-variable, \(p \leftrightarrow -\mathrm {i}\partial _x\).

  4. 4.

    The partition function for 6d theory is instead given by the trace over the Fock space, which gives rise to the character of the corresponding module. See Sect. 8.2.

  5. 5.

    A similar construction is available for 4d \(\mathcal {N} = 2\) theory [25], and also for 6d \(\mathcal {N} = (1,0)\) theory as discussed in Chap. 8.

  6. 6.

    For example, we take \(|q_1| \ll |q_2^{-1}| < 1\) and \(|\mathrm {e}^{\mathsf {a}}| \sim |\mathrm {e}^{m}| \sim 1\). Then, define the ordering \(x \succ x'\) if \(|x| > |x'|\).

  7. 7.

    Precisely speaking, this agreement is up to the constant factor, which is independent of the instanton configuration, and is interpreted as the perturbative contribution.

  8. 8.

    This infinite series is justified using the Jackson integral with the base x denoted by \(\displaystyle \oint _x dz_{q_2} \, S_{i,z}\). See [7] for a related discussion in the context of q-deformation of Dotsenko–Fateev integral.

  9. 9.

    From this relation, we may also incorporate another zero mode in the \(\mathsf {A}\)-operator (and also \(\mathsf {Y}\)-operator), \(\mathsf {A}_{i,x} \rightarrow x^{\kappa _i} \, \mathsf {A}_{i,x}\), which corresponds to the Chern–Simons term.

References

  1. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, C. Vafa, Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006). https://doi.org/10.1007/s00220-005-1448-9, arXiv:hep-th/0312085 [hep-th]

  2. L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). https://doi.org/10.1007/s11005-010-0369-5, arXiv:0906.3219 [hep-th]

  3. M. Aganagic, N. Haouzi, ADE little string theory on a Riemann surface and triality. arXiv:1506.04183 [hep-th]

  4. M. Aganagic, N. Haouzi, C. Kozcaz, S. Shakirov, Gauge/Liouville triality. arXiv:1309.1687 [hep-th]

  5. M. Aganagic, N. Haouzi, S. Shakirov, \(A_n\)-triality. arXiv:1403.3657 [hep-th]

  6. H. Awata, Y. Yamada, Five-dimensional AGT conjecture and the deformed virasoro algebra. JHEP 01, 125 (2010). https://doi.org/10.1007/JHEP01(2010)125, arXiv:0910.4431 [hep-th]

  7. H. Awata, Y. Yamada, Five-dimensional AGT relation and the deformed \(\beta \)-ensemble. Prog. Theor. Phys. 124, 227–262 (2010). https://doi.org/10.1143/PTP.124.227, arXiv:1004.5122 [hep-th]

  8. F. Benini, R. Eager, K. Hori, Y. Tachikawa, Elliptic genera of 2d \({\cal{N}}\) = 2 gauge theories. Commun. Math. Phys. 333(3), 1241–1286 (2015). https://doi.org/10.1007/s00220-014-2210-y, arXiv:1308.4896 [hep-th]

  9. F. Dolan, H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to \(\cal{N}=1\) dual theories. Nucl. Phys. B818, 137–178 (2009). https://doi.org/10.1016/j.nuclphysb.2009.01.028, arXiv:0801.4947 [hep-th]

  10. A. Gadde, Lectures on the superconformal index. arXiv:2006.13630 [hep-th]

  11. D. Honda, T. Okuda, Exact results for boundaries and domain walls in 2d supersymmetric theories. JHEP 09, 140 (2015). https://doi.org/10.1007/JHEP09(2015)140, arXiv:1308.2217 [hep-th]

  12. K. Hori, M. Romo, Exact results in two-dimensional (2,2) supersymmetric gauge theories with boundary. arXiv:1308.2438 [hep-th]

  13. J. Kinney, J.M. Maldacena, S. Minwalla, S. Raju, An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007). https://doi.org/10.1007/s00220-007-0258-7, arXiv:hep-th/0510251

  14. T. Kimura, V. Pestun, Quiver W-algebras. Lett. Math. Phys. 108, 1351–1381 (2018). https://doi.org/10.1007/s11005-018-1072-1, arXiv:1512.08533 [hep-th]

  15. A. Marshakov, N.A. Nekrasov, Extended Seiberg–Witten theory and integrable hierarchy. JHEP 01, 104 (2007). https://doi.org/10.1088/1126-6708/2007/01/104, arXiv:hep-th/0612019

  16. N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. JHEP 03, 181 (2016). https://doi.org/10.1007/JHEP03(2016)181, arXiv:1512.05388 [hep-th]

  17. N. Nekrasov, BPS/CFT correspondence II: Instantons at crossroads, moduli and compactness theorem. Adv. Theor. Math. Phys. 21, 503–583 (2017). https://doi.org/10.4310/ATMP.2017.v21.n2.a4, arXiv:1608.07272 [hep-th]

  18. N. Nekrasov, BPS/CFT correspondence V: BPZ and KZ equations from qq-characters. arXiv:1711.11582 [hep-th]

  19. N. Nekrasov, BPS/CFT correspondence III: gauge origami partition function and qq-characters. Commun. Math. Phys. 358(3), 863–894 (2018). https://doi.org/10.1007/s00220-017-3057-9, arXiv:1701.00189 [hep-th]

  20. N. Nekrasov, BPS/CFT correspondence IV: sigma models and defects in gauge theory. Lett. Math. Phys. 109(3), 579–622 (2019). https://doi.org/10.1007/s11005-018-1115-7, arXiv:1711.11011 [hep-th]

  21. A. Nedelin, F. Nieri, M. Zabzine, q-Virasoro modular double and 3d partition functions. Commun. Math. Phys. 353(3), 1059–1102 (2017). https://doi.org/10.1007/s00220-017-2882-1, arXiv:1605.07029 [hep-th]

  22. N. Nekrasov, A. Okounkov, Seiberg–Witten theory and random partitions, in The Unity of Mathematics, Progress in Mathematics, vol. 244, ed. by P. Etingof, V. Retakh, I.M. Singer (Birkhäuser Boston, 2006), pp. 525–596. https://doi.org/10.1007/0-8176-4467-9_15, arXiv:hep-th/0306238 [hep-th]

  23. F. Nieri, Y. Pan, M. Zabzine, 3d expansions of 5d instanton partition functions. JHEP 04, 092 (2018). https://doi.org/10.1007/JHEP04(2018)092, arXiv:1711.06150 [hep-th]

  24. H. Nakajima, K. Yoshioka, Lectures on instanton counting. CRM Proc. Lec. Notes 38, 31–102 (2003). https://doi.org/10.1090/crmp/038/02, arXiv:math/0311058 [math.AG]

  25. F. Nieri, Y. Zenkevich, Quiver \(\text{W}_{\epsilon _1,\epsilon _2}\) algebras of 4d \(\cal{N}=2\) gauge theories. J. Phys. A 53(27), 275401 (2020). https://doi.org/10.1088/1751-8121/ab9275, arXiv:1912.09969 [hep-th]

  26. C. Romelsberger, Counting chiral primaries in \(\cal{N}= 1\), \(d=4\) superconformal field theories. Nucl. Phys. B747, 329–353 (2006). https://doi.org/10.1016/j.nuclphysb.2006.03.037, arXiv:hep-th/0510060

  27. N. Wyllard, \(A_{N-1}\) conformal Toda field theory correlation functions from conformal \(\cal{N}=2\)\(SU(N)\) quiver gauge theories. JHEP 11, 002 (2009). https://doi.org/10.1088/1126-6708/2009/11/002, arXiv:0907.2189 [hep-th]

  28. Y. Yoshida, K. Sugiyama, Localization of 3d \(\cal{N}=2\) supersymmetric theories on \(S^1 \times D^2\). Prog. Theor. Exp. Phys. 2020, 113B02 (2020). https://doi.org/10.1093/ptep/ptaa136, arXiv:1409.6713 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Kimura .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kimura, T. (2021). Operator Formalism of Gauge Theory. In: Instanton Counting, Quantum Geometry and Algebra. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-76190-5_6

Download citation

Publish with us

Policies and ethics