Skip to main content

Infant Brain Development and Plasticity from an Evolutionary Perspective

  • Chapter
  • First Online:
Evolutionary Perspectives on Infancy

Part of the book series: Evolutionary Psychology ((EVOLPSYCH))

Abstract

The evolution of the human brain following the split from the last common ancestor of hominins and Pan has involved a substantial increase in size as well as modifications to the internal, cellular organization. These changes were likely achieved through modifications in the timing and rate of development during hominin evolution. The result of those changes is a uniquely derived developmental trajectory of the brain in humans compared to non-human primates, which includes an accelerated rate of growth prenatally and in infancy, prolonged development, and substantial postnatal plasticity. The outcome of these evolutionary modifications is significant brain growth and development occurring postnatally. This allows the brain to be shaped by the physical and social environment outside of the uterus to a greater degree than is seen in non-human primates, contributing to the cognitive flexibility, intelligence, and brain plasticity of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., & Wynn, J. G. (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443(7109), 296–301.

    Article  PubMed  Google Scholar 

  • Balzeau, A., Grimaud-Hervé, D., & Jacob, T. (2005). Internal cranial features of the Mojokerto child fossil (East Java, Indonesia). Journal of Human Evolution, 48(6), 535–553.

    Article  PubMed  Google Scholar 

  • Barger, N., Stefanacci, L., Schumann, C. M., Sherwood, C. C., Annese, J., Allman, J. M., Buckwalter, J. A., Hof, P. R., & Semendeferi, K. (2012). Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared with apes: A stereological study. The Journal of Comparative Neurology, 520(13), 3035–3054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barger, N., Stefanacci, L., & Semendeferi, K. (2007). A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain. American Journal of Physical Anthropology, 134(3), 392–403.

    Article  PubMed  Google Scholar 

  • Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z., & St. George, M. (2000). I. The neurocognitive profile of Williams Syndrome: A complex pattern of strengths and weaknesses. Journal of Cognitive Neuroscience, 12(supplement 1), 7–29.

    Article  PubMed  Google Scholar 

  • Bianchi, S., Stimpson, C. D., Duka, T., Larsen, M. D., Janssen, W. G. M., Collins, Z., Bauernfeind, A. L., Schapiro, S. J., Baze, W. B., McArthur, M. J., Hopkins, W. D., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Jacobs, B., Hof, P. R., & Sherwood, C. C. (2013). Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proceedings of the National Academy of Sciences, 110(Supplement_2), 10395–10401.

    Article  Google Scholar 

  • Bick, J., Zhu, T., Stamoulis, C., Fox, N. A., Zeanah, C., & Nelson, C. A. (2015). Effect of early institutionalization and foster care on long-term white matter development: A randomized clinical trial. JAMA Pediatrics, 169(3), 211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogin, B. (2007). The evolution of human brain and body growth patterns. In J. H. Kaas & T. M. Preuss (Eds.), Evolution of nervous systems (pp. 337–345). Elsevier.

    Chapter  Google Scholar 

  • Bourgeois, J., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. The Journal of Neuroscience, 13(7), 2801–2820.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourgeois, J.-P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4(1), 78–96.

    Article  PubMed  Google Scholar 

  • Boyd, J. L., Skove, S. L., Rouanet, J. P., Pilaz, L.-J., Bepler, T., Gordân, R., Wray, G. A., & Silver, D. L. (2015). Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Current Biology, 25(6), 772–779.

    Article  PubMed  Google Scholar 

  • Brown, T. T., Kuperman, J. M., Chung, Y., Erhart, M., McCabe, C., Hagler, D. J., Venkatraman, V. K., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Casey, B. J., Chang, L., Ernst, T. M., Frazier, J. A., Gruen, J. R., Kaufmann, W. E., Kenet, T., Kennedy, D. N., Murray, S. S., … Dale, A. M. (2012). Neuroanatomical assessment of biological maturity. Current Biology, 22(18), 1693–1698.

    Article  PubMed  Google Scholar 

  • Buss, R. R., Sun, W., & Oppenheim, R. W. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29(1), 1–35.

    Article  PubMed  Google Scholar 

  • Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.-E., Lambert, N., de Marchena, J., Jin, W.-L., Vanderhaeghen, P., Ghosh, A., Sassa, T., & Polleux, F. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 149(4), 923–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cofran, Z., & DeSilva, J. M. (2015). A neonatal perspective on Homo erectus brain growth. Journal of Human Evolution, 81, 41–47.

    Article  PubMed  Google Scholar 

  • Cooper, J. A. (2008). A mechanism for inside-out lamination in the neocortex. Trends in Neurosciences, 31(3), 113–119.

    Article  PubMed  Google Scholar 

  • Coqueugniot, H., Hublin, J.-J., Veillon, F., Houët, F., & Jacob, T. (2004). Early brain growth in Homo erectus and implications for cognitive ability. Nature, 431(7006), 299–302.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., Barnes, C. C., & Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001–2010.

    Article  PubMed  Google Scholar 

  • Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230.

    Article  PubMed  Google Scholar 

  • De Leon, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., Ishida, H., & Zollikofer, C. P. E. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences, 105(37), 13764–13768.

    Article  Google Scholar 

  • Dennis, M. Y., Nuttle, X., Sudmant, P. H., Antonacci, F., Graves, T. A., Nefedov, M., Rosenfeld, J. A., Sajjadian, S., Malig, M., Kotkiewicz, H., Curry, C. J., Shafer, S., Shaffer, L. G., de Jong, P. J., Wilson, R. K., & Eichler, E. E. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell, 149(4), 912–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSilva, J. M., & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55(6), 1064–1074.

    Article  PubMed  Google Scholar 

  • Dettling, A. C., Feldon, J., & Pryce, C. R. (2002). Repeated parental deprivation in the infant common marmoset (callithrix jacchus, primates) and analysis of its effects on early development. Biological Psychiatry, 52(11), 1037–1046.

    Article  PubMed  Google Scholar 

  • Falk, D., & Clarke, R. (2007). Brief communication: New reconstruction of the Taung endocast. American Journal of Physical Anthropology, 134(4), 529–534.

    Article  PubMed  Google Scholar 

  • Falk, D., Redmond, J. C., Guyer, J., Conroy, C., Recheis, W., Weber, G. W., & Seidler, H. (2000). Early hominid brain evolution: A new look at old endocasts. Journal of Human Evolution, 38(5), 695–717.

    Article  PubMed  Google Scholar 

  • Falk, D., Zollikofer, C. P. E., Morimoto, N., & Ponce de Leon, M. S. (2012). Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. Proceedings of the National Academy of Sciences, 109(22), 8467–8470.

    Article  Google Scholar 

  • Fiddes, I. T., Lodewijk, G. A., Mooring, M., Bosworth, C. M., Ewing, A. D., Mantalas, G. L., Novak, A. M., van den Bout, A., Bishara, A., Rosenkrantz, J. L., Lorig-Roach, R., Field, A. R., Haeussler, M., Russo, L., Bhaduri, A., Nowakowski, T. J., Pollen, A. A., Dougherty, M. L., Nuttle, X., … Haussler, D. (2018). Human-specific NOTCH2NL genes affect NOTCH signaling and cortical neurogenesis. Cell, 173(6), 1356–1369.e22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Florio, M., Namba, T., Pääbo, S., Hiller, M., & Huttner, W. B. (2016). A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Science Advances, 2(12), e1601941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fossati, M., Pizzarelli, R., Schmidt, E. R., Kupferman, J. V., Stroebel, D., Polleux, F., & Charrier, C. (2016). SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron, 91(2), 356–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabard-Durnam, L. J., O’Muircheartaigh, J., Dirks, H., Dean, D. C., Tottenham, N., & Deoni, S. (2018). Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Developmental Cognitive Neuroscience, 34, 63–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage, F. H. (2019). Adult neurogenesis in mammals. Science, 364(6443), 827–828.

    Article  PubMed  Google Scholar 

  • Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013a). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33(10), 4584–4593.

    Article  PubMed  Google Scholar 

  • Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013b). Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 110(39), 15638–15643.

    Article  Google Scholar 

  • Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22(11), 2478–2485.

    Article  PubMed  Google Scholar 

  • Greenough, W. T., & Black, J. E. (1999). Experience, neural plasticity, and psychological development. The role of early experience in infant development. In N. A. Fox, L. A. Leavitt, & J. G. Warhol (Eds.), The role of early experience in infant development (pp. 29–40). Johnson & Johnson Consumer.

    Google Scholar 

  • Harlow, H. F., & Harlow, M. K. (1962). Social deprivation in monkeys. Scientific American, 207(5), 136–147.

    Article  PubMed  Google Scholar 

  • Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A., & Mcclure, H. M. (1999). Brain weight throughout the life span of the chimpanzee. Journal of Comparative Neurology, 409(4), 567–572.

    Article  Google Scholar 

  • Holland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., Skranes, J., Johansen, H., Hernandez, A., Yamakawa, R., Kuperman, J. M., & Dale, A. M. (2014). Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurology, 71(10), 1266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrvoj-Mihic, B., Bienvenu, T., Stefanacci, L., Muotri, A. R., & Semendeferi, K. (2013). Evolution, development, and plasticity of the human brain: From molecules to bones. Frontiers in Human Neuroscience, 7, 707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrvoj-Mihic, B., Hanson, K. L., Lew, C. H., Stefanacci, L., Jacobs, B., Bellugi, U., & Semendeferi, K. (2017). Basal dendritic morphology of cortical pyramidal neurons in Williams Syndrome: Prefrontal cortex and beyond. Frontiers in Neuroscience, 11, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–178.

    Article  Google Scholar 

  • Jacobs, B. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative golgi study. Cerebral Cortex, 11(6), 558–571.

    Article  PubMed  Google Scholar 

  • Ju, X.-C., Hou, Q.-Q., Sheng, A.-L., Wu, K.-Y., Zhou, Y., Jin, Y., Wen, T., Yang, Z., Wang, X., & Luo, Z.-G. (2016). The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife, 5, e18197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Jung, Y., Barcus, R., Bachevalier, J. H., Sanchez, M. M., Nader, M. A., & Whitlow, C. T. (2020). Rhesus macaque brain developmental trajectory: A longitudinal analysis using tensor-based structural morphometry and diffusion tensor imaging. Cerebral Cortex, 30(8), 4325–4335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28(47), 12176–12182.

    Article  PubMed  Google Scholar 

  • Knickmeyer, R. C., Styner, M., Short, S. J., Lubach, G. R., Kang, C., Hamer, R., Coe, C. L., & Gilmore, J. H. (2010). Maturational trajectories of cortical brain development through the pubertal transition: Unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cerebral Cortex, 20(5), 1053–1063.

    Article  PubMed  Google Scholar 

  • Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences, 98(8), 4752–4757.

    Article  Google Scholar 

  • Lee, J. C., Mayer-Proschel, M., & Rao, M. S. (2000). Gliogenesis in the central nervous system. Glia, 30(2), 105–121.

    Article  PubMed  Google Scholar 

  • Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62(3), 139–164.

    Article  PubMed  Google Scholar 

  • Leigh, S. R., & Park, P. B. (1998). Evolution of human growth prolongation. American Journal of Physical Anthropology, 107(3), 331–350.

    Article  PubMed  Google Scholar 

  • Levitt, P. (2003). Structural and functional maturation of the developing primate brain. The Journal of Pediatrics, 143(4), 35–45.

    Article  Google Scholar 

  • Lew, C. H., Brown, C., Bellugi, U., & Semendeferi, K. (2017). Neuron density is decreased in the prefrontal cortex in Williams syndrome: Prefrontal cortex in Williams syndrome. Autism Research, 10(1), 99–112.

    Article  PubMed  Google Scholar 

  • Lew, C. H., Groeniger, K. M., Bellugi, U., Stefanacci, L., Schumann, C. M., & Semendeferi, K. (2018). A postmortem stereological study of the amygdala in Williams syndrome. Brain Structure and Function, 223(4), 1897–1907.

    Article  PubMed  Google Scholar 

  • Lew, C. H., Groeniger, K. M., Hanson, K. L., Cuevas, D., Greiner, D. M. Z., Hrvoj-Mihic, B., Bellugi, U., Schumann, C. M., & Semendeferi, K. (2020). Serotonergic innervation of the amygdala is increased in autism spectrum disorder and decreased in Williams syndrome. Molecular Autism, 11(1), 1–10.

    Article  Google Scholar 

  • Liu, X., Somel, M., Tang, L., Yan, Z., Jiang, X., Guo, S., Yuan, Y., He, L., Oleksiak, A., Zhang, Y., Li, N., Hu, Y., Chen, W., Qiu, Z., Paabo, S., & Khaitovich, P. (2012). Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Research, 22(4), 611–622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., Hamer, R. M., Shen, D., & Gilmore, J. H. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25(8), 2204–2212.

    Article  PubMed  Google Scholar 

  • Malkova, L., Heuer, E., & Saunders, R. C. (2006). Longitudinal magnetic resonance imaging study of rhesus monkey brain development. European Journal of Neuroscience, 24(11), 3204–3212.

    Article  Google Scholar 

  • Marchetto, M. C., Hrvoj-Mihic, B., Kerman, B. E., Yu, D. X., Vadodaria, K. C., Linker, S. B., Narvaiza, I., Santos, R., Denli, A. M., Mendes, A. P., Oefner, R., Cook, J., McHenry, L., Grasmick, J. M., Heard, K., Fredlender, C., Randolph-Moore, L., Kshirsagar, R., Xenitopoulos, R., … Gage, F. H. (2019). Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife, 8, e37527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzawa, J. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral Cortex, 11(4), 335–342.

    Article  PubMed  Google Scholar 

  • Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., Fobbs, A. J., Sousa, A. M. M., Sestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences, 109(41), 16480–16485.

    Article  Google Scholar 

  • Nelson, C., Furtado, E., Fox, N., & Zeanah, C. (2009). The deprived human brain. American Scientist, 97(3), 222–229.

    Article  Google Scholar 

  • Neubauer, S., Gunz, P., & Hublin, J.-J. (2010). Endocranial shape changes during growth in chimpanzees and humans: A morphometric analysis of unique and shared aspects. Journal of Human Evolution, 59(5), 555–566.

    Article  PubMed  Google Scholar 

  • Neubauer, S., Hublin, J.-J., & Gunz, P. (2018). The evolution of modern human brain shape. Science Advances, 4(1).

    Google Scholar 

  • Neubauer, S., & Hublin, J.-J. (2012). The evolution of human brain development. Evolutionary Biology, 39(4), 568–586.

    Article  Google Scholar 

  • Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Schork, N. J., Murray, S. S., Casey, B. J., Chang, L., Ernst, T. M., Frazier, J. A., Gruen, J. R., Kennedy, D. N., Van Zijl, P., … Sowell, E. R. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773–778.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell, C. A., & DeSilva, J. M. (2013). Mojokerto revisited: Evidence for an intermediate pattern of brain growth in Homo erectus. Journal of Human Evolution, 65(2), 156–161.

    Article  PubMed  Google Scholar 

  • Oppenheim, R. W. (1989). The neurotrophic theory and naturally occurring motoneuron death. Trends in Neurosciences, 12(7), 252–255.

    Article  PubMed  Google Scholar 

  • Payne, C., Machado, C. J., Bliwise, N. G., & Bachevalier, J. (2010). Maturation of the hippocampal formation and amygdala in Macaca mulatta: A volumetric magnetic resonance imaging study. Hippocampus, 20(8), 922–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petanjek, Z., Judas, M., Kostovic, I., & Uylings, H. B. M. (2008). Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: A layer-specific pattern. Cerebral Cortex, 18(4), 915–929.

    Article  PubMed  Google Scholar 

  • Petanjek, Z., JudaÅ¡, M., Å imić, G., RaÅ¡in, M. R., Uylings, H. B. M., Rakic, P., & Kostović, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 108(32), 13281–13286.

    Article  Google Scholar 

  • Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887.

    Article  PubMed  Google Scholar 

  • Piantadosi, S. T., & Kidd, C. (2016). Extraordinary intelligence and the care of infants. Proceedings of the National Academy of Sciences, 113(25), 6874–6879.

    Article  Google Scholar 

  • Rabinowicz, T., de Courten-Myers, G. M., Petetot, J. M. C., Guohua, X. I., & de los Reyes, E. (1996). Human cortex development: Estimates of neuronal numbers indicate major loss late during gestation. Journal of Neuropathology & Experimental Neurology, 55(3), 320–328.

    Article  Google Scholar 

  • Rakic, P. (2000, May). Radial unit hypothesis of neocortical expansion. In Novartis Foundation symposium (pp. 30–52). Wiley.

    Google Scholar 

  • Rakic, P., Bourgeois, J., Eckenhoff, M., Zecevic, N., & Goldman-Rakic, P. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232(4747), 232–235.

    Article  PubMed  Google Scholar 

  • Rakic, P., Bourgeois, J.-P., & Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: Implications for learning, memory, and mental illness. In Progress in brain research (Vol. 102, pp. 227–243). Elsevier.

    Google Scholar 

  • Sakai, T., Mikami, A., Tomonaga, M., Matsui, M., Suzuki, J., Hamada, Y., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., & Matsuzawa, T. (2011). Differential prefrontal white matter development in chimpanzees and humans. Current Biology, 21(16), 1397–1402.

    Article  PubMed  Google Scholar 

  • Sakai, T., Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K., Makishima, H., Eguchi, T., Yamada, S., Ogihara, N., & Takeshita, H. (2012). Fetal brain development in chimpanzees versus humans. Current Biology, 22(18), R791–R792.

    Article  PubMed  Google Scholar 

  • Schumann, C. M. (2004). The amygdala is enlarged in children but not adolescents with autism; The hippocampus is enlarged at all ages. Journal of Neuroscience, 24(28), 6392–6401.

    Article  PubMed  Google Scholar 

  • Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. Journal of Neuroscience, 26(29), 7674–7679.

    Article  PubMed  Google Scholar 

  • Sedmak, D., Hrvoj-Mihić, B., Džaja, D., Habek, N., Uylings, H. B. M., & Petanjek, Z. (2018). Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croatian Medical Journal, 59(5), 189–202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, M. D., & Piven, J. (2017). Brain and behavior development in autism from birth through infancy. Dialogues in Clinical Neuroscience, 19(4), 325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinelli, S., Chefer, S., Suomi, S. J., Higley, J. D., Barr, C. S., & Stein, E. (2009). Early-life stress induces long-term morphologic changes in primate brain. Archives of General Psychiatry, 66(6), 658–665.

    Article  PubMed  Google Scholar 

  • Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strømme, P., Bjømstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. 3. Journal of Child Neurology, 17(4), 269–271.

    Article  PubMed  Google Scholar 

  • Taupin, P., & Gage, F. H. (2002). Adult neurogenesis and neural stem cells of the central nervous system in mammals. Journal of Neuroscience Research, 69(6), 745–749.

    Article  PubMed  Google Scholar 

  • Tottenham, N. (2012). Human amygdala development in the absence of species-expected caregiving. Developmental Psychobiology, 54(6), 598–611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulfig, N., Setzer, M., & Bohl, J. (2006). Ontogeny of the human amygdala. Annals of the New York Academy of Sciences, 985(1), 22–33.

    Article  Google Scholar 

  • Wilder, L., Hanson, K. L., Lew, C. H., Bellugi, U., & Semendeferi, K. (2018). Decreased neuron density and increased glia density in the ventromedial prefrontal cortex (Brodmann area 25) in Williams syndrome. Brain Sciences, 8(12), 209.

    Article  PubMed Central  Google Scholar 

  • Zitzer-Comfort, C., Doyle, T., Masataka, N., Korenberg, J., & Bellugi, U. (2007). Nature and nurture: Williams syndrome across cultures. Developmental Science, 10(6), 755–762.

    Article  PubMed  Google Scholar 

  • Zollikofer, C. P. E., & Ponce de León, M. S. (2010). The evolution of hominin ontogenies. Seminars in Cell & Developmental Biology, 21(4), 441–452. Academic.

    Google Scholar 

  • Zollikofer, C. P. E., & De León, M. S. P. (2013). Pandora’s growing box: Inferring the evolution and development of hominin brains from endocasts: Pandora’s growing box. Evolutionary Anthropology: Issues, News, and Reviews, 22(1), 20–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Semendeferi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilder, L., Semendeferi, K. (2022). Infant Brain Development and Plasticity from an Evolutionary Perspective. In: Hart, S.L., Bjorklund, D.F. (eds) Evolutionary Perspectives on Infancy. Evolutionary Psychology. Springer, Cham. https://doi.org/10.1007/978-3-030-76000-7_3

Download citation

Publish with us

Policies and ethics