Skip to main content

Resistance to Abiotic Stress: Theory and Applications in Maize Breeding

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Cereal Crops

Abstract

Maize, being a widely adapted crop, cultivated across the globe, is supporting both livelihood security and food security of mankind. Cultivated maize is more prone to abiotic stresses as compared to their wild counterpart. Natural mutation followed by natural and artificial selections contributed to yield gains in maize. However, due to the hindrance posed by the abiotic stresses, genetic potential of maize could not be realized to the fullest. Many plant breeding interventions were made to utilize the available genetic resources to breed for stress resilient maize. However, efforts made to breed for high yielding maize through traditional plant breeding approaches and improvement achieved are not matching with the demands. To understand the target traits, geneticist and breeders dissected the traits using modern tools and techniques. Genetic mapping of yield and yield component traits under abiotic stresses opened the new way of marker assisted maize breeding for stress tolerance. Development of different trait specific breeding populations supports the novel findings. Fine mapping and positional cloning experiments provided clear understanding of complex traits like abiotic stresses. The approaches like forward breeding using molecular markers and genomic selection are increasingly becoming cost effective new tools for breeders to accelerate the process of new cultivar development with increased tolerance to abiotic stresses. Genetic variations not present in the wild or cultivated species of maize are also utilized in genetic improvement of maize by transgenic approaches. This has resulted in effective utilization of cross boundary information across different and /or unrelated species. Though the technique is robust, considering societal taboos, this approach has been given less encouragement. Alternate to this, genome editing approach played a remarkable role in improving target traits in maize. The modification in ARGOS gene is one of the landmark achievements in drought tolerance in maize. The specificity of genetic alteration followed by gain in genetic improvement will further be enhanced by base editing techniques. Maize being a well-studied model plant and various breeding concepts have been derived by understanding the genetics of traits; application of novel breeding approaches will certainly favor breeding for stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zeanicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ 35:1618–1630

    CAS  PubMed  Google Scholar 

  • Acquaah G (2012) Allogamy. Principles of plant genetics and breeding, 2nd edn. Wiley, Hoboken, New Jersey, pp 121–130

    Google Scholar 

  • Alam MM, Sharmin S, Nabi Z, Mondal SI, Islam MS, Bin Nayeem S, Shoyaib M, Khan H (2010) A putative leucine-rich repeat receptor-like kinase of jute involved in stress response. Plant Mol Biol Rep 28(3):394–402

    CAS  Google Scholar 

  • Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön CC (2015) Mayer KF (2015) DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database. 1:2015

    Google Scholar 

  • Amara I, Capellades M, Ludevid MD, Pagès M, Goday A (2013),Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170: 864–873

    Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banziger M, Cooper ME (2001) Breeding for low-input conditions and consequences for participatory plant breeding—examples from tropical maize and wheat. Euphytica 122:503–519

    Google Scholar 

  • Banziger M, Lafitte HR (1997) Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci 37:1110–1117

    Google Scholar 

  • Banziger M, Betran FJ, Lafitte HR (1997) Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci 37: 1103–1109

    Google Scholar 

  • Banziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize. CIMMYT, Mexico DF, Mexico

    Google Scholar 

  • Banziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manage 80:212–224

    Google Scholar 

  • Becker H (1993) Pflanzenzüchtung. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Bennet J (2001) Annex I status of breeding for tolerance of abiotic stresses and prospects for use of molecular techniques. CGIAR Technical Advisory Committee, FAO, Rome

    Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, Gonzalez de León D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and non-stress environments. Crop Sci 43:797–806

    Google Scholar 

  • Bird RMK (2000) A remarkable new teosinte from Nicaragua: growth and treatment of progeny. Maize Genet Coop News 74:58–59

    Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    PubMed  PubMed Central  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, p 223

    Google Scholar 

  • Blum A (1989) Osmotic Adjustment and growth of Barley genotypes under drought stress. Crop Sci 291:230–233

    Google Scholar 

  • Bolanos JF, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80

    Google Scholar 

  • Boopathi MN (2013) Linkage mapping construction In: Boopathi (eds) Genetic mapping and marker assisted election: Basics, practice and benefits, Springer, Berlin, pp 81–108

    Google Scholar 

  • Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132(3):1228–1240

    PubMed  PubMed Central  Google Scholar 

  • Cairns JE, Prasanna BM (2018) Developing and deploying climate-resilient maize varieties in the developing world. Curr Opin Plant Biol 45:226–230. https://doi.org/10.1016/j.pbi.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Nair BR, SK Das, B Govaerts, B Vinayan, MT Rashid Z, Noor JJ, Devi P, San Vicente F, Prasanna BM (2012) Maize production in a changing climate: impacts, adaptation and mitigation strategies. Adv Agron 114: 1–58

    Google Scholar 

  • Cakir R (2004) Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop Res 89(1):1–16

    Google Scholar 

  • Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genom 17(1):1–5

    Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-yassin A, Benbelkacem A, Labdi M, Mimoun H (2010) Climate change and agriculture paper: plant breeding and climate changes. J Agric Sci 148:627–637

    Google Scholar 

  • Cho KT, Gardiner JM, Harper LC, Lawrence-Dill CJ, Friedberg I, Andorf CM (2019) MaizeDIG: maize database of images and genomes. Front Plant Sci 10:1050

    PubMed  PubMed Central  Google Scholar 

  • Cirilo G, Dardanelli J, Balzarini M, Andrade FH, Cantarero M, Luque S, Pedrol HM (2009) Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Res 113:116–124

    Google Scholar 

  • Clark RB, Alberts EE, Zobel RW, Sinclair TR, Miller MS, Kemper WD, Foy CD (1996) Eastern gamagrass (Tripsacum dactyloides) root penetration and chemical properties of claypan soils. In: Box JE Jr (ed) Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Kluwer Acad Pub, Dordrecht, The Netherlands, pp 191–211

    Google Scholar 

  • Clough E, Barrett T (2016) The gene expression omnibus database. In: Statistical genomics, Humana Press, New York, pp 93–110

    Google Scholar 

  • Cooper M, Fukai S, Wade LJ (1999) How can breeding contribute to more productive and sustainable rainfed lowland rice systems? Field Crops Res 64:199–209

    Google Scholar 

  • Coyne PI, Bradford JA (1985) Comparison of leaf gas exchange and water-use efficiency in two eastern gamagrass accessions. Crop Sci 25:65–75. https://doi.org/10.2135/cropsci1985.0011183X002500010018x

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  • Dar I, Dar A, Lone ZA, Kamaluddin AA, Sofi PA, Hussan S, Dar MS, Alie W (2018) Genetic variability studies involving drought tolerance related traits in maize genotypes. J Agric Ecol Res Intl 14(2):1–13

    Google Scholar 

  • Deinlein U, Stephan AB, Tomoaki HW, Guohua XJ, Schroeder I (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Google Scholar 

  • Edmeades GO (1993) Causes for silk delay in a lowland tropical maize population. Crop Sci 33:1029–1035

    Google Scholar 

  • Edmeades GO (2013) Progress in achieving and delivering drought tolerance in maize—an update. ISAAA, Ithaca, NY

    Google Scholar 

  • Edmeades GO, Bolanos J, Banziger M, Ribaut JM, White JW, Reynolds MP, Lafitte HR (1998) Improving crop yields under water deficits in the tropics. In: Chopra VL, Singh RB, Varma A (eds) Crop productivity and sustainability—shaping the future. ICSC/IBH, Oxford, UK/New Delhi, India, pp 437–451

    Google Scholar 

  • Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves tolerance to mid/late season drought in tropical maize populations. I. Gains in biomass, grain yield and harvest index. Crop Sci 39:1306–1315

    Google Scholar 

  • Elsik CG, Tayal A, Unni DR, Nguyen HN, Gardiner J, Le Tourneau J, Andorf CM (2018) MaizeMine: a data mining warehouse for MaizeGDB. In: Plant and animal genome XXVI conference, January 13–17, San Diego, CA

    Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kriz A, Larkins B (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 173–195

    Google Scholar 

  • Eubanks MW (2006) A genetic bridge to utilize Tripsacum germplasm in maize improvement. Maydica 51(2):315–327

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 29:8 Available from: http://journal.frontiersin.org/article/10.3389/fpls.2017.01147/full

  • FAOSTAT (2018) Food and Agricultural Organization of the United Nations (FAO), FAO Statistical Database, http://faostat.fao.org

  • Farooq M, Hussain M, Wakeel A, Kadambot H, Siddique M (2015) Salt stress in maize: effects, resistance mechanisms, and management: a review. Agron Sustain Dev 35:461–481. https://doi.org/10.1007/s13593-015-0287-0

    Article  CAS  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research: Canberra, xxii + 634 pp

    Google Scholar 

  • Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2007) Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res 114:329–342

    Google Scholar 

  • Frascaroli E, Landi P (2013) Divergent selection in a maize population for germination at low temperature in controlled environment: Study of the direct response, of the trait inheritance and of correlated responses in the field. Theor Appl Genet 126:733–746

    PubMed  Google Scholar 

  • Frey FP, Presterl T, Lecoq P, Orlik A, Stich B (2016) First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Genet 129:945–961

    PubMed  PubMed Central  Google Scholar 

  • Fritsche S, Poovaiah C, MacRae E, Thorlby G (2018) A New Zealand perspective on the application and regulation of gene editing. Front Plant Sci 9:1323. https://doi.org/10.3389/fpls.2018.01323

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganther M, Vetterlein D, Heintz-Buschart A (2020) Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant Soil. https://doi.org/10.1007/s11104-021-04921-0

  • Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J (2019) Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot 70(8):4849–4864. https://doi.org/10.1093/jxb/erz171

    Article  CAS  PubMed  Google Scholar 

  • Gilker RE, Weil RR, Donald, El-Husseiny M (2002) Eastern gamagrass root penetration in adverse subsoil conditions. Soil Sci Soc Amer J 66. https://doi.org/10.2136/sssaj2002.0931

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge in abiotic stress tolerance to breeding programs. Plant J 90:898–917

    CAS  PubMed  Google Scholar 

  • Gilmour AR, Cullis BR, Welham SJ, Thompson R (1998) (Co) Variance stricture for linear model in the analysis of plant improvement data. COMPSTAT98 proceedings in computational statistics. Physica-Verlag, Heidelberg, Germany, pp 51–64

    Google Scholar 

  • Gitz DC, Baker JT, Stout JE, Brauer DK, Lascano RJ, Velten JP (2013) Suitability of eastern gamagrass for in situ precipitation catchment forage production in playas. Agron J 105:907–914. https://doi.org/10.2134/agronj2012.0358

    Article  Google Scholar 

  • Grzesiak S, Hura T, Grzesiak MT, Pienkowski S (1999) The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiol Plant 3:305–315

    Google Scholar 

  • Gui S, Yang L, Li J, Luo J, Xu X, Yuan J, Chen L, Li W, Yang X, Wu S, Li S (2020) ZEAMAP, a comprehensive database adapted to the maize multi-omics era. iScience 23(6):101241

    Google Scholar 

  • Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought stress conditions. Plant Biotechnol J 12(6):685–693

    CAS  PubMed  Google Scholar 

  • Hallauer AR, Sears JH (1969) Mass selection for yield in two varieties of maize. Crop Sci 9:47–50

    Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29:237–254

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14(5):9643–9684. https://doi.org/10.3390/ijms14059643

    Article  CAS  Google Scholar 

  • He C, He Y, Liu Q, Liu T, Liu C, Wang L, Zhang J (2013) Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. Mol Breed 31(3):559–573

    CAS  Google Scholar 

  • He Z, Zhong J, Sun X, Wang B, Terzaghi W, Dai M (2018) The Maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Front Plant Sci 9:1–12

    Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    CAS  PubMed  Google Scholar 

  • Hu G, Li Z, Yuncai Lu, Li C, Gong S, Yan S, Li G, Wang M, Ren H, Guan H, Zhang Z, Qin D, Chai M, Yu J, Li Y, Yang D, Wang T, Zhang Z (2017) Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep 7:1–11

    Google Scholar 

  • IFPRI (2003) 2025 Projections. International model for policy analysis of agriculture commodities and trade (IMPACT) special project: Global Trend in Food Security & Demand. IFPRI, Washington, DC

    Google Scholar 

  • Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10:382–390. https://doi.org/10.2307/3392992

    Article  Google Scholar 

  • IPCC (2007) Climate change 200: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, Switzerland

    Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198:38–45. https://doi.org/10.1111/j.1439-037x.2011.00487.x

    Article  Google Scholar 

  • Johnson SS, Geadelmann JL (1989) Influence of water stress on grain yield response to recurrent selection in maize. Crop Sci 29:558–564

    Google Scholar 

  • Jouanin A, Boyd L, Visser RGF, Smulders MJM (2018) Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Front Plant Sci 9:1523. https://doi.org/10.3389/fpls.2018.01523

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor M, Sveenivasan G (1988) The heat shock response of Neurospora crassa: stress-induced thermo tolerance in relation to peroxidase and superoxide dismutase levels. Biochem Biophys Res Commun 156(3):1097–1102

    CAS  PubMed  Google Scholar 

  • Kemper WD, Alberts EE, Foy CD, Clark RB, Ritchie JC, Zobel RW (1997) Aerenchyma, acid tolerance, and associative N fixation enhance carbon sequestration in soil. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. CRC Press, Boca Raton, pp 221–234

    Google Scholar 

  • Keppler BD, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3(5):834–841

    CAS  PubMed  Google Scholar 

  • Khodarahmpour Z, Choukan R (2011) Genetic variation of maize (Zea mays L.) inbred lines in heat stress condition. Seed Plant Improv J 27(4):539–554

    Google Scholar 

  • Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K (2015) ArrayExpress update—simplifying data submissions. Nucleic Acids Res 43(D1):D1113–D1116

    CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23(7):1647–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Lee S, Yang S, Lee I (2019) MaizeNet: a co-functional network for network-assisted systems genetics in Zea mays. Plant J 99(3):571–582

    CAS  PubMed  Google Scholar 

  • Leinonen R, Sugawara H, Shumway M (2010) International nucleotide sequence database collaboration. The sequence read archive. Nucleic Acids Res 39(1):D19–21

    Google Scholar 

  • Li B, Wei A, Song C, Li N, Zhang J (2008a) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6(2):146–159

    CAS  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147(3):1334–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers VG, VossenEAvd QuD, Visser RG, Jacobsen E, Vossen JH (2011a) Cloning and characterization of r3b; members of the r3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant-Microbe Interact 24:1132–1142

    CAS  PubMed  Google Scholar 

  • Li L, Hao Z, Li X, Xie C, Li M, Zhang D, Weng J, Su Z, Liang X, Zhang S (2011b) An analysis of the polymorphisms in a gene for being involved in drought tolerance in maize. Genetica 139:479–487

    PubMed  Google Scholar 

  • Li XY, Liu ZY, Li TX (2011c) An impact test study of the flood disasters on summer corn’s characters and yield. Acta Meteorol Sin 31:79–82

    Google Scholar 

  • Li S, Yang W, Guo J, Li S, Lin J, Zhu X (2020) Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem 154:1–10

    CAS  PubMed  Google Scholar 

  • Link W, Abdelmula AA, von Kittlitz E, Bruns S, Riemer H, Stelling D (1999) Genotypic variation for drought tolerance in Viciafaba. Plant Breed 118:477–483

    Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Qin L, Han L, Xiang Y, Zhao D (2015) Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density. Plant Cell Tiss Org Cult 122(1):147–59

    Google Scholar 

  • Liu Y, Qin L, Han L, Xiang Y, Zhao D (2015b) Over expression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density. Plant Cell Tiss Org Cult 122:147–159. https://doi.org/10.1007/s11240-015-0757-8

    Article  CAS  Google Scholar 

  • Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617

    CAS  Google Scholar 

  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L et al (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One 8(1):e52126. https://doi.org/10.1371/journal.pone.0052126

  • Luo J, Wei C, Liu H, Cheng S, Xiao Y, Wang X, Yan J, Liu J (2020) (2020) MaizeCUBIC: a comprehensive variation database for a maize synthetic population. Database 1:2020

    Google Scholar 

  • Magar M, Parajuli A, Sah B, Shrestha J, Sakha B, Koirala K, Dhital S (2019) Effect of PEG induced drought stress on germination and seedling traits of maize (Zea mays L.) Lines. Türk Tarım ve Doğa Bilimleri Dergisi 6(2):196–205

    Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Root 1:17–21. https://doi.org/10.3117/plantroot.1.17

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize_ teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223. https://doi.org/10.1270/jsbbs.58.217

    Article  Google Scholar 

  • Mano Y, Omori F (2013) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zeanicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112:1125–1139. https://doi.org/10.1093/aob/mct160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano YY, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42. https://doi.org/10.1007/s10681-005-0449-2

    Article  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga C et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113. https://doi.org/10.1007/s11104-007-9266-9

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Loaisiga CH, Bird RM (2009) QTL mapping of above-ground adventitious roots during flooding in maize x teosinte “Zea nicaraguensis” backcross population. Plant Root 3:3–9. https://doi.org/10.3117/plantroot.3.3

    Article  CAS  Google Scholar 

  • Mansouri-Far C, Modarres Sanavy SAM, Saberali SF (2010) Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agri Water Manage 97:12–22

    Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, SSSA, Madison, WI, pp 99–118

    Google Scholar 

  • Milivojević M, Nikolić, A Marković, K Filipović, M Vančetović, J Petrović, T Srdić J (2017) Relationship between genetic diversity and cold-tolerance of maize inbred lines. Genetika 49(2):635–646

    Google Scholar 

  • Mittler R (2006) Abiotic stress the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Moisseyev G, Park K, Cui A, Freitas D, Rajagopal D, Konda AR, Martin-Olenski M, Mcham M, Liu K, Du Q (2020) Schnable JC (2020) RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database 1:2020

    Google Scholar 

  • Morosini JA, Mendonça LF, Lyra DH, Galli G, Vidotti M, Fritsche-Neto R (2017) Association mapping for traits related to nitrogen use efficiency in tropical maize lines under field conditions. Plant Soil 421:453–463. https://doi.org/10.1007/s11104-017-3479-3

  • Morroco A, Lorenzoni C, Fracheboud Y (2005) Chilling stress in maize. Maydica 50:571–580

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nelimor C, Badu-Apraku B, Tetteh AY, N’guetta ASP (2019) Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces. Plants 8:518

    Google Scholar 

  • Nelimor C, Badu-Apraku B, Tetteh AY, Garcia-Oliveira AL, N’guetta ASP (2020) Assessing the potential of extra-early maturing landraces for improving tolerance to drought, heat, and both combined stresses in maize. Agronomy 10:318. https://doi.org/10.3390/agronomy10030318

  • Nepolean T, Kaul J, Mukri G, Mittal S (2018) Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Front Plant Sci 9:361. https://doi.org/10.3389/fpls.2018.00361

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesmith DS, Ritchie JT (1992) Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crop Res 28(3):251–256

    Google Scholar 

  • Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea Mays L.). Adv Crop Sci Technol 1:105

    Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33(8):862–869

    CAS  PubMed  Google Scholar 

  • OECD/FAO (2016) “OECD/FAO Agriculture Outlook”, OECD Agriculture statistics (database). http://dx.doi.org/l0.1787/agr-outl-data-en

  • Omori F, Mano Y (2007) QTL mapping of root angle in F2 populations from maize ‘B73’ × teosinte ‘Zea luxurians’. Plant Root 1:57–65. https://doi.org/10.3117/plantroot.1.57

    Article  CAS  Google Scholar 

  • Partheeban C, Chandrasekhar CN, Jeyakumar P, Ravikesavan R, Gnanam R (2017) Early stage evaluation of root traits associated with drought tolerance in maize (Zea Mays L.) genotypes. Chem Sci Rev Lett 6(22):1301–1307

    Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38(3):410–420

    CAS  PubMed  Google Scholar 

  • Perumalsamy S, Bharani M, Sudha M, Nagarajan P, Arul L, Saraswathi R, Balasubramanian P, Ramalingam J (2010) Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed 129:400–406

    CAS  Google Scholar 

  • Pesqueira J, Garcia M, Molina MC (2003) NaCl tolerance in maize (Zea mays ssp. mays) x Tripsacumdactyloides L. hybrid calli in regenerated plants. Span J Agric Res 1:59–63. https://doi.org/10.5424/sjar/2003012-21

    Article  Google Scholar 

  • Pesqueira J, García MD, Staltari S, Molina MDC (2006) NaCl effects in Zea mays × Tripsacum dactyloides hybrid calli and plants. Electr J Biotechnol 9:286–290. https://doi.org/10.2225/vol9-issue3-fulltext-29

    Article  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ 25:1251–1259

    CAS  Google Scholar 

  • Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, Walsh JR, Sen TZ, Cho KT, Schott DA, Braun BL (2019) MaizeGDB, 2018 The maize multi-genome genetics and genomics database. Nucleic Acids Res 47(D1):D1146–D1154

    PubMed  Google Scholar 

  • Prasad PVV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486. https://doi.org/10.1111/j.1467-7652.2004.00093.x

    Article  CAS  PubMed  Google Scholar 

  • Rathore TR, Warsi MZK, Lothrop JE, Singh NN (1996) Production of maize under excess soil moisture waterlogging conditions. In: 6th Asian regional maize workshop, 10–12 Feb 1996, PAU Ludhiana, pp 56–63

    Google Scholar 

  • Ray J, Kindiger B, Dewald C, Sinclair T (1998) Preliminary survey of root aerenchyma in Tripsacum. Maydica 43:49–54

    Google Scholar 

  • Ray JD, Kindiger B, Sinclair TR (1999) Introgressing root aerenchyma into maize. Maydica 44(2):113–117

    Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    CAS  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Trends in genetic diversity during the history of wheat domestication and breeding. Theor Appl Genet 110:859–864

    CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) 4th. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A. Sep 25;98(20):11479-84. https://doi.org/10.1073/pnas.201394398 Epub 2001 Sep 18. PMID: 11562485; PMCID: PMC58755.

  • Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön CC, Bauer E, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Álvarez ÁRD, Galarreta JI, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127. https://doi.org/10.1186/s12870-016-0816-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Betran J, Monneveux P, Setter T (2009) Drought tolerance in maize. In: Bennetzen JL, Hake SC (eds) Handbook of Maize. Springer, New York, pp 311–344

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:57–166

    Google Scholar 

  • Risser PE, Birney EC, Blocker H, May S, Parton W, Weins J (1981) The true prairie ecosystem. Hutchinson Publishing Co., Stroudsburg, PA

    Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21:943–946

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    CAS  PubMed  Google Scholar 

  • Schubert S, Neubert A, Schierholt A, Sumer A, Zorb C (2009) Development of salt resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202. https://doi.org/10.1016/j.plantsci.2009.05.011

    Article  CAS  Google Scholar 

  • Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom 14:313. https://doi.org/10.1186/1471-2164-14-313

    Article  Google Scholar 

  • Shao Q, Punt M, Wesseler J (2018) New plant breeding techniques under food security pressure and lobbying. Front Plant Sci 9:1324. https://doi.org/10.3389/fpls.2018.01324

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol 169(1):266–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinasekinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101(9):3298–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R, Melchinger AE (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36:1871–1887

    CAS  PubMed  Google Scholar 

  • Su Z, Li X, Hao Z, Xie C, Li M, Weng J, Zhang D, Liang X, Wang Z, Gao J, Zhang S (2011) Association analysis of the nced and rab28 genes with phenotypic traits under water stress in maize. Plant Mol Biol Rep 29:714–722

    Google Scholar 

  • Sulmon C, Gouesbet G, Ramel F, Cabello-Hurtado F, Penno C, Bechtold N, Couee I, El Amrani A (2011) Carbon dynamics, development and stress responses in arabidopsis: involvement of the APL4 subunit of ADP-glucose pyrophosphorylase (starch synthesis). PLoS ONE 6(11):

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh S, Malathi D (2013) Gene pyramiding for biotic stress tolerance in crop plants. Wkly Sci Res J 1:1–14

    Google Scholar 

  • Tandzi LN, Bradley G, Mutengwa C (2019) Morphological responses of maize to drought, heat and combined stresses at seedling stage. J Biol Sci 19(1):7–16

    CAS  Google Scholar 

  • Tarter JA, Goodman MM, Holland JB (2004) Recovery of exotic alleles in semi-exotic maize inbreds derived from crosses between Latin American accessions and a temperate line. Theor Appl Genet 109:609–617

    CAS  PubMed  Google Scholar 

  • Thornton PK, Jones PG, Alagarswamy G, Andersen J (2009) Spatial variation of crop yield response to climate change in East Africa. Glob Environ Change 19(1):54–65

    Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16(3):658–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vuylsteke MJR (1999) Genetic analysis of maize by using the AFLP method. PhD thesis, University of Wageningen, Netherlands

    Google Scholar 

  • Vuylsteke M, Kuiper M, Stam P (2000) Chromosomal regions involved in hybrid performance and heterosis: their AFLPbased identification and practical use in prediction models. Heredity 85:208–218

    CAS  PubMed  Google Scholar 

  • Wang H, Qin F (2017) Genome-wide association study reveals natural variations contributing to drought resistance in crops. Front Plant Sci 8:1110

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2007) Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta 218:1–14

    Google Scholar 

  • Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227(5):1127–1140

    CAS  PubMed  Google Scholar 

  • Wang AY, Li Y, Zhang CQ (2012) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256

    Google Scholar 

  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241. https://doi.org/10.1038/ng.3636

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Google Scholar 

  • Warburton ML, Xia X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48:617–624

    Google Scholar 

  • Wei A, He C, Li B, Li N, Zhang J (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9(2):216–229

    CAS  PubMed  Google Scholar 

  • Xia XC, Reif JC, Hoisington DA, Melchinger AE, Frisch M, Warburton ML (2004) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci 44:2230–2237

    Google Scholar 

  • Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Beck D, Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical mid-altitude, and highland maize inbred lines and their relationships with elite US and European maize. Crop Sci 45:2573–2582

    CAS  Google Scholar 

  • Yadav OP, Weltzien-Rattunde E, Bidinger FR (2003) Genetic variation in drought response of landraces of pearl millet (Pennisetum glaucum (L.) R. Br.). Indian J Genet 63:37–40

    Google Scholar 

  • Yang L, Fu FL, Deng LQ, Zhou SF, Yong TM, Li WC (2012) Cloning and characterization of functional keratin-associated protein 5–4 gene in maize. Afr J Biotechnol 11(29):7417–7423

    CAS  Google Scholar 

  • Yi Q, Malvar RA, Álvarez-Iglesias L, Ordás B, Revilla P (2020) Dissecting the genetics of cold tolerance in a multi parental maize population. Theor Appl Genet 133(2):503–516. https://doi.org/10.1007/s00122-019-03482-2

    Article  CAS  PubMed  Google Scholar 

  • Yin G, Gu J, Zhang F, Hao L, Cong P, Liu Z (2014) Maize yield response to water supply and fertilizer input in a semi-arid environment of northeast china. PLoS ONE 9:

    PubMed  PubMed Central  Google Scholar 

  • Yin Y, Wang Q, Xiao L, Wang F, Song Z, Zhou C et al (2018) Advances in the engineering of the gene editing enzymes and the genomes: understanding and handling the off-target effects of CRISPR/Cas9. J Biomed Nanotechnol 14:456–476. https://doi.org/10.1166/jbn.2018.2537

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y, Wang N, Hao Z, Vicente FS, Olsen MS, Prasanna BM, Lu Y, Zhang X (2019) Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci 9:1919. pmid:30761177

    Google Scholar 

  • Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, Shang GM, Wei C (2013) PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13(1):33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67(5):1339–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M, Holland J, Kresovich S (2006) Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res 34(1):D752–D757

    CAS  PubMed  Google Scholar 

  • Zheng HJ, Wu AZ Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62

    Google Scholar 

  • Zhou W, Wang L, Zheng W, Yao W (2019) MaizeSNPDB: a comprehensive database for efficient retrieve and analysis of SNPs among 1210 maize lines. Comput Struct Biotechnol J17:1377–1383

    Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Biol 49(1):697–725

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati Mukri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gadag, R.N. et al. (2021). Resistance to Abiotic Stress: Theory and Applications in Maize Breeding. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-75875-2_3

Download citation

Publish with us

Policies and ethics