Skip to main content

The Input-Output Organization of the Cerebrocerebellum as Kalman Filter

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

This chapter brings enigmatic connectivity of the cerebellar dentate nucleus (DN) and the cerebellar forward model hypothesis together to demonstrate the cerebrocerebellum as loci of Kalman filters. We start with a brief history of the cerebellar internal model hypothesis. Next we present two lines of new evidence for the forward model hypothesis. First, we show physiological evidence that the cerebellar outputs from DN are predictive for the inputs to the cerebrocerebellum. Second, we introduce an enigmatic MF collateral to DN and demonstrate it is an essential key to the Kalman filter model. We further discuss how the Kalman filter model for the motor cerebrocerebellum could be generalized to non-motor parts as a unifying principle for the diverse functions of the cerebrocerebellum. We conclude that the Kalman filter model also explains how parallel modules in the cerebrocerebellar communication loops are coordinated in a cascadic manner, providing a partial explanation for unity of mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Allen, G. I., & Tukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Reviews, 54, 957–1006.

    Article  CAS  PubMed  Google Scholar 

  • Alstermark, B., & Ekerot, C. F. (2013). The lateral reticular nucleus: a precerebellar centre providing the cerebellum with overview and integration ofmotor functions at systems level. A new hypothesis. Journal of Physiology, 591, 5453–5458.

    Google Scholar 

  • Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16, 645–649.

    Article  CAS  PubMed  Google Scholar 

  • Bastian, J., & Zakon, H. H. (2005). Plasticity of sense organs and brain. In T. H. Bullock, C. D. Hopkins, A. N. Popper, & R. R. Fay (Eds.), Electroception (pp. 195–228). Springer.

    Chapter  Google Scholar 

  • Brodal, P., & Bijaalie, J. G. (2003). Organization of the pontine nuclei. Neuroscience Research, 13, 83–118.

    Google Scholar 

  • Bruckmoser, P., Hepp, M. C., & Wiesendanger, M. (1969). Cortical influence on the lateral reticular nucleus of the cat. Brain Research, 15, 556–558.

    Google Scholar 

  • Droulez, J., & Cornílleau-Pérèz, V. (1993). Application of the coherence scheme to the multisensory fusion problem. In A. Berthoz (Ed.), Multisensory control of movement (pp. 485–501). Oxford University Press.

    Chapter  Google Scholar 

  • Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. Cerebellum, 7, 583–588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer-Verlag.

    Book  Google Scholar 

  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience., 5, 1688–1703.

    Article  CAS  PubMed  Google Scholar 

  • Gerrits, N. M., & Voogd, J. (1987). The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the centralcerebellar nuclei in the cat. Journal of Comparative Neurology, 258, 52–69.

    Google Scholar 

  • Haggard, P., & Wing, A. (1995). Coordinate responses following mechanical perturbations of the arm during prehension. Experimental Brain Research, 102, 483–494.

    Article  CAS  PubMed  Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (1998). Signal dependent noise determines motor planning. Nature, 394, 780–784.

    Article  CAS  PubMed  Google Scholar 

  • Heidary, H., & Tomasch, J. (1969). Neuron numbers and perikaryon areas in the human cerebellar nuclei. Acta Anatomica (Basel), 74, 290–296.

    Article  CAS  Google Scholar 

  • Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. Springer-Verlag. (Page 23).

    Book  Google Scholar 

  • Ishikawa, T., Tomatsu, S., Tsunoda, Y., Lee, J., Hoffman, D. S., & Kakei, S. (2014). Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum. PLoS One, 9, e108774. https://doi.org/10.1371/journal.pone.0108774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa, T., Tomatsu, S., Izawa, J., & Kakei, S. (2016). The cerebro-cerebellum: Could it be loci of forward models? Neuroscience Research, 104, 72–79.

    Article  PubMed  Google Scholar 

  • Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7, 162–176.

    CAS  PubMed  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience – The geometry of excitability and bursting. The MIT Press.

    Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285, 2136–2139.

    Article  CAS  PubMed  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4, 1020–1025.

    Article  CAS  PubMed  Google Scholar 

  • Kakei, S., Lee, J., Mitoma, H., Tanaka, H., Manto, M., & Hampe, C. S. (2019). Contribution of the cerebellum to predictive motor control and its evaluation in ataxic patients. Frontiers in Human Neuroscience, 13, 216. https://doi.org/10.3389/fnhum.2019.00216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction. ASME Journal of Basic Engineering, 83, 95–108.

    Article  Google Scholar 

  • Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23, 8432–8444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk, D. E. (1970). Optimal control theory: An introduction. Prentice-Hall.

    Google Scholar 

  • Larsell, O. (1967). The comparative anatomy and histology of the cerebellum. University of Minnesota Press.

    Google Scholar 

  • Lee, J., Kagamihara, Y., Tomatsu, S., & Kakei, S. (2012). The functional role of the cerebellum in visually guided tracking movement. Cerebellum, 11, 426–433.

    Article  PubMed  Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuyama, K., & Drew, T. (1997). Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a studyusing the anterograde tracer Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology, 389, 617–641.

    Google Scholar 

  • Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. (1993). Is the cerebellum a smith predictor? Journal of Motor Behavior, 25, 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Miall, R. C., Christensen, L. O. D., Cain, O., & Stanley, J. (2007). Disruption of state estimation in the human lateral cerebellum. PLoS Biology, 5, e316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitoma, H., Adhikari, K., Aeschlimann, D., Chattopadhyay, P., Hadjivassiliou, M., Hampe, C. S., Honnorat, J., Joubert, B., Kakei, S., Lee, J., Manto, M., Matsunaga, A., Mizusawa, H., Nanri, K., Shanmugarajah, P., Yoneda, M., & Yuki, N. (2016). Consensus paper: Neuroimmune mechanisms of cerebellar ataxias. Cerebellum, 15, 213–232.

    Article  CAS  PubMed  Google Scholar 

  • Na, J., Sugihara, I., & Shinoda, Y. (2019). The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C-positive compartments of the rat cerebellar cortex. The Journal of Comparative Neurology, 527, 2488–2511.

    Article  CAS  PubMed  Google Scholar 

  • Paulin, M. (1989). A Kalman filter theory of the cerebellum. In M. A. Arbib & S. Amari (Eds.), Dynamic interactions in neural networks: Models and data (pp. 239–259). Springer.

    Chapter  Google Scholar 

  • Paulin, M. (1997). Neural representations of moving systems. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 515–533). Academic Press.

    Google Scholar 

  • Sanger, T. D., Yamashita, O., & Kawato, M. (2019). Expansion coding and computation in the cerebellum: 50 years after the Marr-Albus codon theory. Journal of Physiology, 598, 913–928.

    Article  CAS  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology, 289, 53–73.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 308, 224–248.

    Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1993). Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 337, 94–112.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1997). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience, 17, 438–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann, J. D., Rosene, D. L., & Pandya, D. N. (2004). Motor projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 478, 248–268.

    Google Scholar 

  • Stein, R. B., Oguztoreli, M. N., & Capaday, C. (1994). What is optimized in muscular movements? In Stengel R. F. Optimal Control and Estimation. New York: Dover

    Google Scholar 

  • Stengel, R. F. (1994). Optimal control and estimation. Dover.

    Google Scholar 

  • Sugahara, F., Pascual-Anaya, J., Oisi, Y., Kuraku, S., Aota, S., Adachi, N., Takagi, W., Hirai, T., Sato, N., Murakami, Y., & Kuratani, S. (2016). Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature, 531, 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, H., Ishikawa, T., & Kakei, S. (2019). Neural evidence of the cerebellum as a state predictor. Cerebellum, 18, 349–371. https://doi.org/10.1007/s12311-018-0996-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka, H., Ishikawa, T., Lee, J., & Kakei, S. (2020). The cerebro-cerebellum as a locus of forward model; a review. Frontiers in Systems Neuroscience, 14, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thach, W. T. (1975). Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Research, 88, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Thach, W. T. (1978). Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. Journal of Neurophysiology, 41, 654–676.

    Article  CAS  PubMed  Google Scholar 

  • Thier, P., & Markanday, A. (2019). Role of the vermal cerebellum in visually guided eye movements and visual motion perception. Annual Review of Vision Science, 5, 247–268.

    Article  PubMed  Google Scholar 

  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasch, J. (1969). The numerical capacity of the human cortico-pontocerebellar system. Brain Research, 13, 476–484.

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu, S., Ishikawa, T., Tsunoda, Y., Lee, J., Hoffman, D. S., & Kakei, S. (2016). Information processing in the hemisphere of the cerebellar cortex for control of wrist movement. Journal of Neurophysiology, 115, 255–270.

    Article  PubMed  Google Scholar 

  • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement: Minimum torque-change model. Biological Cybernetics, 61, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.

    Article  CAS  PubMed  Google Scholar 

  • Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265–1279.

    Article  PubMed  Google Scholar 

  • Wu, H., Sugihara, I., & Shinoda, Y. (1999). Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. The Journal of Comparative Neurology, 411, 97–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Profs. Hiroshi Mitoma and Koji Ito for their valuable comments and discussions.

Support

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT) (http://www.mext.go.jp/) (no. 26120003, no. 14580784, no. 15016008, no. 16015212, no. 20033029, and no. 21500319 to SK; no. 25430007, no. 26120005, and no. 16 K12476 to HT; no. 21700229 and no. 24650304 to JL; and no. 24650224 to TI), the Japan Science and Technology Agency (A-STEP) to SK (http://www.jst.go.jp/), the Japan Science and Technology Agency (PRESTO: Intelligent Cooperation and Control) (SK), NBRP “Japanese Monkeys” through the National BioResource Project of MEXT, the JSPS Programs (Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, and Embodied-Brain Systems Science) (HT), and the Hitachi-Kurata and the Tateishi Science Foundations (HT). This research was also supported by AMED under grant number 16ek0109048h0003 to SK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kakei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kakei, S., Tanaka, H., Ishikawa, T., Tomatsu, S., Lee, J. (2021). The Input-Output Organization of the Cerebrocerebellum as Kalman Filter. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_19

Download citation

Publish with us

Policies and ethics