Skip to main content

The Crucial Role of Jasmonates in Enhancing Heavy Metals Tolerance in Plants

  • Chapter
  • First Online:
Jasmonates and Salicylates Signaling in Plants

Abstract

Climate change is the leading cause of crop yield losses worldwide. Recent progression in plant biology and ground-breaking molecular and biochemical procedures have increased our understanding of phytohormonal signaling in response to numerous abiotic stresses, including heavy metals (HMs) toxicity in plants. HMs toxicity owns numerous harmful effects on plant health, including growth inhibition, reduction in biomass production, leaves chlorosis, imbalance of nutrients, and water contents, ultimately causing leaf senescence and plant death. Jasmonates (JAs) are naturally occurring lipid-derived hormones that normalize global plant growth and development under HMs toxicity. Notably, JAs as vital growth controllers are involved in numerous physiological, biochemical, and molecular mechanisms in plants. JAs alone or occasionally in grouping with other phytohormones upgrade the stress tolerance system in plants. As a whole, JAs can secure plants from the harmful effects of HMs toxicity through the up-regulation of JA-associated gene expression and several physiological and biochemical mechanisms. Moreover, JAs can uphold the veracity of plant cells in response to different HMs by increasing the antioxidant defense systems and biosynthesis of some osmoprotectants. In this chapter, we have discussed the JA biosynthesis and metabolisms, its beneficial role in response to several HMs, its crucial role as antioxidant defense, and its cross-talk with other phytohormones have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adimalla N (2020) Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: a review. Environ Geochem Health 42:173–190

    Article  CAS  PubMed  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248:601–612

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri A, Seth CS (2020) Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere 243:125361

    Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63:1889–1899

    Article  CAS  Google Scholar 

  • Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang L-x (2018) Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B 19:130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Baek K-H (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. IntJ Mol Sci 21:621

    Article  CAS  Google Scholar 

  • Azeem U (2018) Ameliorating Nickel stress by Jasmonic acid treatment in Zea mays L. Russ Agric Sci 44:209–215

    Article  Google Scholar 

  • Bali S, Jamwal VL, Kaur P, Kohli SK, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ahmad P (2019) Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicol Environ Saf 174:283–294

    Article  CAS  PubMed  Google Scholar 

  • Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA (2019) Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 235:734–748

    Article  CAS  PubMed  Google Scholar 

  • Bali S, Kaur P, Kohli SK, Ohri P, Thukral AK, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci Total Environ 645:1344–1360

    Article  CAS  PubMed  Google Scholar 

  • Coelho DG, de Andrade HM, Marinato CS, Araujo SC, de Matos LP, da Silva VM, de Oliveira JA (2020) Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic. Acta Physiol Plant 42:97

    Article  CAS  Google Scholar 

  • DÄ…browska P, Boland W (2007) Iso-OPDA: an early precursor of cis-jasmone in plants? Chem Bio Chem 8:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Dai H, Wei S, Pogrzeba M, Rusinowski S, Krzyżak J, Jia G (2020) Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system. Ecotoxicol Environ Saf 190:110176

    Article  CAS  PubMed  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2019) Jasmonates: mechanisms and functions in abiotic stress tolerance of plants. Biocatal Agric Biotechnol 20:101210

    Article  Google Scholar 

  • Farooq MA, Islam F, Yang C, Nawaz A, Gill RA, Ali B, Song W, Zhou W (2018) Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul 84:135–148

    Article  CAS  Google Scholar 

  • Farooq MA, Zhang K, Islam F, Wang J, Athar HU, Nawaz A, Ullah Zafar Z, Xu J, Zhou W (2018) Physiological and iTRAQ-based quantitative proteomics analysis of Methyl Jasmonate-induced tolerance in Brassica napus under Arsenic stress. Proteomics 18:1700290

    Article  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297

    Article  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D, Gheysen G, Goossens A (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han G-Z (2017) Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 68:1323–1331

    CAS  PubMed  Google Scholar 

  • Hanaka A, Wójcik M, Dresler S, Mroczek-Zdyrska M, Maksymiec W (2016) Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotoxicol Environ Saf 124:480–488

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Selenium in Plants: boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive Oxygen species and Antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  CAS  PubMed Central  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Hua T, Zhang R, Sun H, Liu C (2020) Alleviation of boron toxicity in plants: mechanisms and approaches. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1807451

    Article  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Kakavand SN, Karimi N, Ghasempour H-R (2019) Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non-metallicolous Alyssum inflatum Náyr. Populations. Plant Physiol Biochem 135:450–459

    Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Ann Rev Plant Biol 66:571–598

    Article  CAS  Google Scholar 

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    PubMed Central  Google Scholar 

  • Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R (2020) Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262:127810

    Article  PubMed  CAS  Google Scholar 

  • Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ (2020) Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol 62:218–227

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen J, Chen S (2018) Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicol Environ Saf 157:102–110

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang K, Meng Y, Hu J, Ding M, Bian J, Yan M, Han J, Zhou M (2018) Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor. Plant J 95:444–457

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Yang Z, Ayoko GA, Frost RL, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA 175:339–348

    Article  CAS  Google Scholar 

  • Matsui R, Takiguchi K, Matsuda K, Takahashi K, Matsuura H (2019) Feeding experiment using uniformly 13C-labeled α-linolenic acid supports the involvement of the decarboxylation mechanism to produce cis-jasmone in Lasiodiplodia theobromae. Biosci Biotechnol Biochem 83:2190–2193

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Sirhindi G, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37:1195–1209

    Article  CAS  Google Scholar 

  • Mousavi SR, Niknejad Y, Fallah H, Tari DB (2020) Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep 39:1041–1060

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Per TS, Khan NA, Masood A, Fatma M (2016) Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard. Front Plant Sci 7:1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilaisangsuree V, Anuwan P, Supdensong K, Lumpa P, Kongbangkerd A, Limmongkon A (2020) Enhancement of adaptive response in peanut hairy root by exogenous signalling molecules under cadmium stress. J Plant Physiol 254:153278

    Article  CAS  PubMed  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. Seedlings under copper stress. Amer J Plant Sci 4:29827

    Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  • Raza A (2020) Eco-physiological and biochemical responses of Rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10231-z

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020a) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, pp 117–145

    Google Scholar 

  • Raza A, Charagh S, Sadaqat N, Jin W (2020b) Arabidopsis thaliana: Model plant for the study of abiotic stress responses. In: The plant family Brassicaceae. Springer, pp 129–180

    Google Scholar 

  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M (2020c) Phytoremediation of Cadmium: physiological, biochemical, and molecular mechanisms. Biology 9:177

    Article  CAS  PubMed Central  Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2020d) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02614-z

    Article  PubMed  Google Scholar 

  • Raza A, Habib M, Charagh S, Kakavand SN (2021a) Genetic engineering of plants to tolerate toxic metals and metalloids. In: Handbook of bioremediation. Elsevier, pp 411–436

    Google Scholar 

  • Raza A, Hussain S, Javed R, Hafeez MB Hasanuzzaman M (2021b) Antioxidant Defense Systems and Remediation of Metal Toxicity in Plants. In Approaches to the Remediation of Inorganic Pollutants. Springer, Singapore, pp 91–124

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019a) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019b) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Wheat production in changing environments. Springer, pp 557–577

    Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    CAS  PubMed Central  Google Scholar 

  • Sarabandi M, Farokhzad A, Mandoulakani BA, Ghasemzadeh R (2019) Biochemical and gene expression responses of two Iranian grape cultivars to foliar application of methyl jasmonate under boron toxicity conditions. Sci Hortic 249:355–363

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Shah K (2014) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochem 108:57–66

    Article  CAS  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI (2020) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agron 10:699

    Article  CAS  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EA (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol 146:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Ivanov A, Reyes-Díaz M (2019) Protective effect of methyl jasmonate on photosynthetic performance and its association with antioxidants in contrasting aluminum-resistant blueberry cultivars exposed to aluminum. J Soil Sci Plant Nutr 19:203–216

    Article  CAS  Google Scholar 

  • Verma G, Srivastava D, Narayan S, Shirke PA, Chakrabarty D (2020) Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicol Environ Saf 201:110735

    Google Scholar 

  • Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham M, Rinklebe J (2017) Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113:219–230

    Article  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Z, Liu L, Su H, Guo L, Zhang J, Li Y, Xu J, Zhang X, Guo Y-D, Zhang N (2020) Jasmonate and aluminum crosstalk in tomato: identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth. Plant Physiol Biochem 154:409–418

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321

    CAS  PubMed  Google Scholar 

  • Wasternack C, Strnad M (2016) Jasmonate signaling in plant stress responses and development–active and inactive compounds. New Biotechnol 33:604–613

    Article  CAS  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19:2539

    Article  PubMed Central  CAS  Google Scholar 

  • Wasternack C, Xie D (2010) The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. Plant Signal Behav 5:337–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiszniewska A, MuszyÅ„ska E, Hanus-Fajerska E, Dziurka K, Dziurka M (2018) Evaluation of the protective role of exogenous growth regulators against Ni toxicity in woody shrub Daphne jasminea. Planta 248:1365–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang N, Kang F (2020) Jasmonate improved cadmium resistance in maize seedlings by regulating spermidine synthesis. Int J Agric Biol 24:171–178

    CAS  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Li X, Chen J, Tam NF-Y (2015) Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicol Environ Saf 113:124–132

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    Article  CAS  Google Scholar 

  • Yu X, Zhang W, Zhang Y, Zhang X, Lang D, Zhang X (2019) The roles of methyl jasmonate to stress in plants. Funct Plant Biol 46:197–212

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Mohammad F (2018) Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul 37:1331–1348

    Article  CAS  Google Scholar 

  • Zhang Q, Cao PS, Cheng Y, Yang SS, Yin YD, Lv TY, Gu ZY (2020) Nonlinear ion transport through ultrathin metal-organic framework nanosheet. Adv Funct Mater. https://doi.org/10.1002/adfm.202004854

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Sun Q, Dong P, Ma C, Sun H, Liu C (2019) Jasmonic acid alleviates boron toxicity in Puccinellia tenuiflora, a promising species for boron phytoremediation. Plant Soil 445:397–407

    Article  CAS  Google Scholar 

  • Zhao S, Ma Q, Xu X, Li G, Hao L (2016) Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress. J Plant Growth Regul 35:603–610

    Article  CAS  Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: impacts and remediation. J Environ Manag 250:109557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the scientists whose contributions have been cited in this study, which helped us get more insight into the presented area and prepare this chapter. Further, we apologize to those whose contributions have not been cited in this chapter due to space limitations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A., Charagh, S., Najafi-Kakavand, S., Siddiqui, M.H. (2021). The Crucial Role of Jasmonates in Enhancing Heavy Metals Tolerance in Plants. In: Aftab, T., Yusuf, M. (eds) Jasmonates and Salicylates Signaling in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-75805-9_8

Download citation

Publish with us

Policies and ethics