Skip to main content

Outcomes of Short Implants in Bone Deficiency

  • Chapter
  • First Online:
Innovative Perspectives in Oral and Maxillofacial Surgery
  • 1707 Accesses

Abstract

Patients with long-standing edentulous sites frequently have reduced alveolar bone height which can be a major limitation for the use of dental implants. Invasive surgical procedures are often necessary to overcome these limitations in order to provide enough bone height for traditional length dental implants. The key advantage of placing short dental implants is the avoidance of these invasive bone augmentation procedures which are associated with higher morbidity, additional costs, and longer treatment periods.

Innovations in dental implant design, prosthetic connection modifications, and improvements in osteotomy preparation have all led to the increased predictability of short dental implants by increasing initial stability and preventing crestal bone loss. Accumulating data support the conclusion that short dental implants (those with a designated intra-bony length ≤ 8 mm) have similar long-term prognosis as traditional length implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagni G, Pellegrini G, Giannobile WV, Rasperini G. Postextraction alveolar ridge preservation: Biological basis and treatments. Int J Dent. 2012;2012:151030.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashman A. Postextraction ridge preservation using a synthetic alloplast. Implant Dent. 2000;9(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  3. das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJ. Short implants—an analysis of longitudinal studies. J Prosthet Dent. 2006;96(4):288.

    Article  Google Scholar 

  4. Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res. 2006;17(SUPPL. 2):35–51.

    Article  PubMed  Google Scholar 

  5. Deporter D. Short implants. In: Minimally invasive dental implant surgery. 1st ed. Hoboken: Wiley Blackwell; 2016. p. 193–207.

    Google Scholar 

  6. Lum LB. Biomechanical rationale for the use of short implants. J Oral Implantol. 1991;17(2):126–31.

    CAS  PubMed  Google Scholar 

  7. Pierrisnard L, Renouard F, Renault P, Barquins M. Influence of implant length and Bicortical Anchorage on implant stress distribution. Clin Implant Dent Relat Res. 2003;5(4):254–62.

    Article  PubMed  Google Scholar 

  8. Renouard F, Nisand D. Short implants in the severely resorbed maxilla: a 2-year retrospective clinical study. Clin Implant Dent Relat Res. 2005;7(s1):s104–10.

    Article  PubMed  Google Scholar 

  9. Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent. 2010;30(1):89–95.

    PubMed  Google Scholar 

  10. Srinivasan M, Vazquez L, Rieder P, Moraguez O, Bernard JP, Belser UC. Survival rates of short (6 mm) micro-rough surface implants: a review of literature and meta-analysis. Clin Oral Implants Res. 2014;25(5):539–45.

    Article  PubMed  Google Scholar 

  11. Annibali S, Cristalli MP, Dell’Aquila D, Bignozzi I, La Monaca G, Pilloni A. Short dental implants: a systematic review. J Dent Res. 2012;91(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  12. Menchero-Cantalejo E, Barona-Dorado C, Cantero-Álvarez M, Fernández-Cáliz F, Martínez-González JM. Meta-analysis on the survival of short implants. Med Oral Patol Oral Cir Bucal. 2011;16(4):e546–51.

    Article  PubMed  Google Scholar 

  13. Ravidà A, Barootchi S, Askar H, Suárez-López del Amo F, Tavelli L, Wang HL. Long-term effectiveness of extra-short (≤ 6 mm) dental implants: A systematic review. Int J Oral Maxillofac Implant. 2019;34(1):68–84a.

    Article  Google Scholar 

  14. Kotsovilis S, Fourmousis I, Karoussis IK, Bamia C. A systematic review and Meta-analysis on the effect of implant length on the survival of rough-surface dental implants. J Periodontol. 2009;80(11):1700–18.

    Article  PubMed  Google Scholar 

  15. Nisand D, Renouard F. Short implant in limited bone volume. Periodontol 2000. 2014;66(1):72–96.

    Article  PubMed  Google Scholar 

  16. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(SUPPL. 4):172–84.

    Article  PubMed  Google Scholar 

  17. Pommer B, Frantal S, Willer J, Posch M, Watzek G, Tepper G. Impact of dental implant length on early failure rates: a meta-analysis of observational studies. J Clin Periodontol. 2011;38(9):856–63.

    Article  PubMed  Google Scholar 

  18. Fugazzotto PA, Beagle JR, Ganeles J, Jaffin R, Vlassis J, Kumar A. Success and failure rates of 9 mm or shorter implants in the replacement of missing maxillary molars when restored with individual crowns: preliminary results 0 to 84 months in function. . A Retrospective Study. J Periodontol. 2004;75(2):327–32.

    Article  PubMed  Google Scholar 

  19. Lai HC, Si MS, Zhuang LF, Shen H, Liu YL, Wismeijer D. Long-term outcomes of short dental implants supporting single crowns in posterior region: a clinical retrospective study of 5-10 years. Clin Oral Implants Res. 2013;24(2):230–7.

    Article  PubMed  Google Scholar 

  20. Malchiodi L, Ghensi P, Cucchi A, Pieroni S, Bertossi D. Peri-implant conditions around sintered porous-surfaced (SPS) implants. A 36-month prospective cohort study. Clin Oral Implants Res. 2015;26(2):212–9.

    Article  PubMed  Google Scholar 

  21. Deporter D, Ogiso B, Sohn D-S, Ruljancich K, Pharoah M. Ultrashort sintered porous-surfaced dental implants used to replace posterior teeth. J Periodontol. 2008;79(7):1280–6.

    Article  PubMed  Google Scholar 

  22. Deporter D, Pharoah M, Yeh S, Todescan R, Atenafu EG. Performance of titanium alloy sintered porous-surfaced (SPS) implants supporting mandibular overdentures during a 20-year prospective study. Clin Oral Implants Res. 2014;25(2):189–95.

    Article  Google Scholar 

  23. Deporter D, Watson P, Pharoah M, Todescan R, Tomlinson G. Ten-year results of a prospective study using porous-surfaced dental implants and a mandibular overdenture. Clin Implant Dent Relat Res. 2002;4(4):183–9.

    Article  PubMed  Google Scholar 

  24. Misch CE. Scientific rationale for dental implant design. In: Contemporary implant dentistry. 3rd ed. St. Louis: Elsevier; 2008. p. 200–29.

    Google Scholar 

  25. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration: review. Clin Oral Implants Res. 2010;21(2):129–36.

    Article  PubMed  Google Scholar 

  26. Manikyamba YJ, Rao B, Raju RA, Sajjan MCS, Nair K. C. Implant thread designs : an overview. Trends Prosthodont Dent Implantol. 2017;8(1 & 2):11–9.

    Google Scholar 

  27. Ryu HS, Namgung C, Lee JH, Lim YJ. The influence of thread geometry on implant osseointegration under immediate loading: a literature review. J Adv Prosthodont. 2014;6(6):547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Misch CE, Steigenga J, Barboza E, Misch-Dietsh F, Cianciola LJ, Kazor C. Short dental implants in posterior partial Edentulism: a Multicenter retrospective 6-year case series study. J Periodontol. 2006;77(8):1340–7.

    Article  PubMed  Google Scholar 

  29. Iplikçioǧlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent. 2002;30(1):41–6.

    Article  PubMed  Google Scholar 

  30. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100(6):422–31.

    Article  PubMed  Google Scholar 

  31. Esposito M, Pellegrino G, Pistilli R, Felice P. Rehabilitation of posterior atrophic edentulous jaws: prostheses supported by 5 mm short implants or by longer implants in augmented bone? One-year results from a pilot randomised clinical trial. Eur J Oral Implantol. 2011;4(1):21–30.

    PubMed  Google Scholar 

  32. Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study. Clin Oral Implants Res. 2010;21(9):937–43.

    PubMed  Google Scholar 

  33. Urdaneta RA, Daher S, Leary J, Emanuel KM, Chuang S-K. The survival of ultrashort locking-taper implants. Int J Oral Maxillofac Implants. 2014;27(3):644–54.

    Google Scholar 

  34. Gargiulo AW, Wntz FMOB. Dimensions and relations of the Dentogingival junction in humans. J Periodontol. 1960;32:261–7.

    Article  Google Scholar 

  35. Shin Y, Han C, Heo S. Radiographic evaluation of marginal bone levels around dental implants with different designs after 1 year. Int J Oral Maxillofac Implant. 2006;21(1):789–94.

    Google Scholar 

  36. Nevins M, Shapoff CA, Hezaimi K, Kim DM. Engineering biologic width and tissue levels with implant and abutment surface preparation. In: Minimally invasive dental implant surgery. 1st ed; 2017. p. 107–18.

    Chapter  Google Scholar 

  37. Geurs NC, Vassilopoulos PJ, Reddy MS. Histologic evidence of connective tissue integration on laser microgrooved abutments in humans. Clin Adv Periodontics. 2011;1(1):29–33.

    Article  Google Scholar 

  38. Nevins M, Kim DM, Jun S-H, Guze K, Schupbach P, Nevins ML. Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study. Int J Periodontics Restorative Dent. 2010;30(3):245–55.

    PubMed  Google Scholar 

  39. Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dent. 2009;18(1):57–66.

    Article  PubMed  Google Scholar 

  40. Alexander H, Ricci JL, Hrico GJ. Mechanical basis for bone retention around dental implants. J Biomed Mater Res – Part B Appl Biomater. 2009;88(2):306–11.

    Article  CAS  Google Scholar 

  41. Hansson S. The implant neck: smooth or provided with retention elements. Clin Oral Implants Res. 1999;10:394–405.

    Article  CAS  PubMed  Google Scholar 

  42. Zuffetti F, Testarelli L, Bertani P, Vassilopoulos S, Testori T, Guarnieri R. A retrospective Multicenter study on short implants with a laser-microgrooved collar (≤7.5 mm) in posterior edentulous areas: radiographic and clinical results up to 3 to 5 years. J Oral Maxillofac Surg. 2020;78(2):217–27.

    Article  PubMed  Google Scholar 

  43. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent. 2006;26(1):9–17.

    PubMed  Google Scholar 

  44. Telleman G, Meijer HJA, Vissink A, Raghoebar GM. Short implants with a nanometer-sized CaP surface provided with either a platform-switched or platform-matched abutment connection in the posterior region: a randomized clinical trial. Clin Oral Implants Res. 2013;24(12):1316–24.

    Article  CAS  PubMed  Google Scholar 

  45. Telleman G, Raghoebar GM, Vissink A, Meijer HJA. Impact of platform switching on Peri-implant bone Remodeling around short implants in the posterior region, 1-year results from a Split-mouth clinical trial. Clin Implant Dent Relat Res. 2014;16(1):70–80.

    Article  PubMed  Google Scholar 

  46. Aslam AAB. Platform-switching to preserve Peri-implant bone : a meta analysis. J Coll Physicians Surg Pakistan. 2016;26(4):315–9.

    Google Scholar 

  47. Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent. 1999;81(5):553–61.

    Article  CAS  PubMed  Google Scholar 

  48. Felice P, Pellegrino G, Checchi L, Pistilli R, Esposito M. Vertical augmentation with interpositional blocks of an organic bovine bone vs. 7-mm-long implants in posterior mandibles: 1-year results of a randomized clinical trial. Clin Oral Implants Res. 2010;21(12):1394–403.

    Article  PubMed  Google Scholar 

  49. Cannizzaro G, Leone M, Torchio C, Viola PEM. Immediate versus early loading of 7-mm-long flapless-placed single implants. Eur J Oral Implantol. 2008;1(4):227–92.

    Google Scholar 

  50. Rokni S, Todescan R, Watson P, Pharoah M, Adegbembo AO, Deporter D. An assessment of crown-to-root ratios with short sintered porous-surfaced implants supporting prostheses in partially edentulous patients. Int J Oral Maxillofac Implants. 2005;20(1):69–76.

    PubMed  Google Scholar 

  51. Schincaglia G. Pietro, Thoma DS, Haas R, Tutak M, Garcia A, Taylor TD, et al. randomized controlled multicenter study comparing short dental implants (6 mm) versus longer dental implants (11-15 mm) in combination with sinus floor elevation procedures. Part 2: clinical and radiographic outcomes at 1 year of loading. J Clin Periodontol. 2015;42(11):1042–51.

    Article  PubMed  Google Scholar 

  52. Anitua E, Piñas L, Orive G. Retrospective study of short and extra-short implants placed in posterior regions: influence of crown-to-implant ratio on marginal bone loss. Clin Implant Dent Relat Res. 2015;17(1):102–10.

    Article  PubMed  Google Scholar 

  53. Tawil G, Aboujaoude N, Younan R. Influence of prosthetic parameters on the survival and complication rates of short implants. Int J Oral Maxillofac Implants. 2006;21(2):275–82.

    PubMed  Google Scholar 

  54. Hingsammer L, Watzek G, Pommer B. The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: a radiological and clinical short term analysis. Clin Implant Dent Relat Res. 2017;19(6):1090–8.

    Article  PubMed  Google Scholar 

  55. Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants. 1997;12:360–70.

    CAS  PubMed  Google Scholar 

  56. Yilmaz B, Seidt JD, McGlumphy EA, Clelland NL. Comparison of strains for splinted and nonsplinted screw-retained prostheses on short implants. Int J Oral Maxillofac Implants. 2011;26(6):1176–82.

    PubMed  Google Scholar 

  57. Vazouras K, de Souza AB, Gholami H, Papaspyridakos P, Pagni S, Weber HP. Effect of time in function on the predictability of short dental implants (≤6 mm): a meta-analysis. J Oral Rehabil. 2020;47(3):403–15.

    Article  PubMed  Google Scholar 

  58. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  59. Guichet D, Yoshinobu DCA. Effect of splinting and interproximal contact tightness on load transfer by implant restorations. Implant Dent. 1998;7(4):377.

    Google Scholar 

  60. Korabi R, Shemtov-Yona K, Rittel D. On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res. 2017;19(5):935–43.

    Article  PubMed  Google Scholar 

  61. Villarinho EA, Triches DF, Alonso FR, Mezzomo LAM, Teixeira ER, Shinkai RSA. Risk factors for single crowns supported by short (6-mm) implants in the posterior region: a prospective clinical and radiographic study. Clin Implant Dent Relat Res. 2017;19(4):671–80.

    Article  PubMed  Google Scholar 

  62. Degidi M, Daprile G, Piattelli A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: an in vitro study. J Oral Maxillofac Surg. 2015;73(6):1084–8.

    Article  PubMed  Google Scholar 

  63. Vidyasagar L, Salms G, Apse P, Teibe U. The Influence of Site Preparation ( Countersinking ) on Initial Dental Implant Stability. An in vitro Study Using Resonance Frequency Analysis. Stomatol Balt Dent Maxillofac J. 2004;6:14–6.

    Google Scholar 

  64. Anitua E, Orive G, Aguirre JJ, Andía I. Five-year clinical evaluation of short dental implants placed in posterior areas: a retrospective study. J Periodontol. 2008;79(1):42–8.

    Article  PubMed  Google Scholar 

  65. Padhye NM, Padhye AM, Bhatavadekar NB. Osseodensification –– a systematic review and qualitative analysis of published literature. J Oral Biol Craniofacial Res. 2020;10(1):375–80.

    Article  Google Scholar 

  66. Nizam N, Gürlek Ö, Kaval M. Extra-short implants with osteotome sinus floor elevation: a prospective clinical study. Int J Oral Maxillofac Implants. 2020;35(2):415–22.

    Article  PubMed  Google Scholar 

  67. Taschieri S, Karanxha L, Francetti L, Weinstein R, Giannì AB, Del Fabbro M. Minimally-invasive osteotome sinus floor elevation combined with short implants and platelet-rich plasma for edentulous atrophic posterior maxilla: a five-year follow-up prospective study. J Biol Regul Homeost Agents. 2018;32(4):1015–20.

    CAS  PubMed  Google Scholar 

  68. Deporter D, Todescan R, Caudry S. Simplifying management of the posterior maxilla using short, porous-surfaced dental implants and simultaneous indirect sinus elevation. Int J Periodontics Restorative Dent. 2000;20(5):476–85.

    CAS  PubMed  Google Scholar 

  69. Anitua E, Piñas L, Begoña L, Orive G. Long-term retrospective evaluation of short implants in the posterior areas: clinical results after 10-12 years. J Clin Periodontol. 2014;41(4):404–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Farrell IV .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farrell, T. (2021). Outcomes of Short Implants in Bone Deficiency. In: Stevens, M.R., Ghasemi, S., Tabrizi, R. (eds) Innovative Perspectives in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-75750-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75750-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75749-6

  • Online ISBN: 978-3-030-75750-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics