Skip to main content

Soft Computing Techniques for Energy Consumption and Resource Aware Allocation on Cloud: A Progress and Systematic Review

  • Chapter
  • First Online:
Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Part of the book series: Studies in Big Data ((SBD,volume 89))

Abstract

Cloud computing plays a vital role in storage and transfer of immense capacity data due to a rapid growth in size and the quantity of organizational tasks. There are many studies in which varied soft computing methods are applied to the cloud environment. In large data centers the cloud services indorse not only the energy consumption price of the substructure resources but also with a considerable growth in environmental costs. These subjects are significant requisites to decrease the energy cost and carbon footprint of cloud computing systems. To minimize energy consumption, the intelligent machines are required to achieve crossways numerous diverse machines, and strategies corresponding across the hardware and software layers to balance performance and energy, as well as to proficiently exploit multiple resources. Energy-efficient Cloud Organization Resource Allocation Framework is getting acceptance as it is paying operative consideration to cloud data management with an interpretation to achieve maximum revenue and minimum cost. The primary objective of the chapter is to conduct the systematic study and mapping of recent soft computing techniques to resolve the resource allocation and energy consumption problems in cloud computing. The chapter discuss the various soft computing techniques which are used in cloud environment for energy-resource allocation, workflow scheduling and performing the migration on cloud computing system. The first section of the chapter comprises of Introduction, motivation, background works which includes Framework for Energy and resource aware allocation using soft computing techniques, various issues, benefits of the work and application areas of soft computing techniques for cloud. The next section of the chapter highlighted the reported work which covers the detailed study of the researchers for energy efficiency and resource allocation using soft commuting techniques. The final section of the chapter discuss the comparative analysis which compares the work of different researchers by using various performance parameters such as execution time, power consumption, energy efficiency, resource utilization, response time and makespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vouk, A.: Cloud computing-issues, research and implementations. In: Proceedings of the ITI 2008 30th International Conference on Information Technology Interfaces (2008)

    Google Scholar 

  2. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25, 599–616 (2009)

    Article  Google Scholar 

  3. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: 24th IEEE International Conference on Advanced Information Networking and Applications. IEEE Computer Society (2010)

    Google Scholar 

  4. Sukale, S., Biradar, D.: Review of nature inspired algorithms. Int. J. Comput. Appl. 109(3), 6–8 (2015)

    Google Scholar 

  5. Kaur, Kumar, Y.: Swarm intelligence and its applications towards various computing: a systematic review. In: 2020 International Conference on Intelligent Engineering and Management (ICIEM), London, United Kingdom, 2020, pp. 57–62 (2020)

    Google Scholar 

  6. Binitha, S., Sathya, S.S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)

    Google Scholar 

  7. Dorigo, M., Maniezzo, V.: Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  8. Dasgupta, D.: Advances in artificial immune systems. IEEE Comput. Intell. Mag. 1(4), 40–49 (2006)

    Article  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  10. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  11. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  12. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006)

    Article  MathSciNet  Google Scholar 

  13. Chu, S.C., Tsai, P., Pan, J.S.: Cat swarm optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science, vol. 4099. Springer, Berlin (2006)

    Google Scholar 

  14. Karimkashi, S., Kishk, A.A.: Invasive weed optimization and its features in electromagnetics. IEEE Trans. Antennas Propag. 58(4), 1269–1278 (2010)

    Article  Google Scholar 

  15. Zhao, R., Tang, W.: Monkey algorithm for global numerical applications. J. Uncertain Syst. 2(5), 165–176 (2007)

    Google Scholar 

  16. Yang, F.C., Wang, Y.P.: Water flow-like algorithm for object grouping problems. J. Chin. Inst. Ind. Eng. 24(6), 475–488 (2007)

    Google Scholar 

  17. Filho, C.J.A.B., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: Fish school search. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. Studies in Computational Intelligence, vol. 193. Springer, Berlin (2009)

    Google Scholar 

  18. Rajabouin, R.: Cuckoo optimization algorithm. Appl. Soft Comput. (Elsevier) 11(8), 5508–5518 (2011)

    Article  Google Scholar 

  19. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol. 284. Springer (2010)

    Google Scholar 

  20. Dhanya, D., Arivudainambi, D.: Dolphin partner optimization based secure and qualified virtual machine for resource allocation with streamline security analysis. Peer-to-Peer Netw. Appl. 12, 1194–1213 (2019)

    Article  Google Scholar 

  21. Yang, X.S.: Flower pollination algorithm for global optimization. In: Durand-Lose, J., Jonoska, N. (eds.) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol. 7445. Springer (2012)

    Google Scholar 

  22. Karthick, P.T., Palanisamy, C.: Optimized cluster head selection using krill herd algorithm for wireless sensor network. Automatika 60(3), 340–348 (2019)

    Article  Google Scholar 

  23. Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 5(4), 458–472 (2018)

    Google Scholar 

  24. Mirjalili, S.Z., Saremi, S., Mirjalili, S.M.: Designing evolutionyary feedforward neural networks using social spider optimization algorithm. Neural Comput. Appl. 26, 1919–1928 (2015)

    Article  Google Scholar 

  25. Orujpour, M., Feizi-Derakhshi, M., Rahkar-Farshi, T.: Multi-modal forest optimization algorithm. Neural Comput. Appl. 32, 6159–6173

    Google Scholar 

  26. Kumar, Y., Kaul, S., Sood, K.: A comprehensive view of different computing techniques—a systematic detailed literature review. In: International Conference on Advances in Engineering Science Management & Technology (ICAESMT) 2019, Uttaranchal University, Dehradun, India (2019)

    Google Scholar 

  27. Demirci, M.: A Survey of Machine Learning Applications for Energy-Efficient Resource Management in Cloud Computing Environments, pp. 1185–1190 (2015)

    Google Scholar 

  28. Liao, S.W., Hung, T.W., Nguyen, D., Chou, C., Tu, H., Zhou: Machine learning-based prefetch optimization for data center applications. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 56–65. ACM (2009)

    Google Scholar 

  29. Wu, G., Tang, M., Tian, Y.C., Li, W.: Energy-efficient virtual machine placement in data centers by genetic algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol. 7665, pp. 315–323 (2012)

    Google Scholar 

  30. Ghafari, S.M., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-MMT: a load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, pp. 76–80 (2013)

    Google Scholar 

  31. Hasan, A.R., Mohammed, A.M., Salih, Z., Ameedeen, M., Tapus, N., Mohammed, M.: HSO: a hybrid swarm optimization algorithm for re-ducing energy consumption in the cloudlets. TELKOMNIKA (Telecommun. Comput. Electron. Control) 16(5), 2144–2154 (2018)

    Article  Google Scholar 

  32. Dinesh Reddy, V., Gangadharan, G.R., Rao, G.S.V.R.K.: Energy-aware virtual machine allocation and selection in cloud data centers. Soft. Comput. 23, 1917–1932 (2019)

    Article  Google Scholar 

  33. Duan, H., Chen, C., Min, G., Wu, Y.: Energy-aware scheduling of virtual machines in heterogeneous cloud computing systems. Future Gener. Comput. Syst. 154–166 (2016)

    Google Scholar 

  34. Kansal, N.J., Chana, I.: Energy-aware virtual machine migration for cloud computing—a firefly optimization approach. J. Grid. Comput. 14, 327–345 (2016)

    Article  Google Scholar 

  35. Meshkati, J., Safi-Esfahani, F.: Energy-aware resource utilization based on particle swarm optimization and artificial bee colony algorithms in cloud computing. J. Supercomput. 75, 2455–2496 (2019)

    Article  Google Scholar 

  36. Wen, Y., Li, Z., Jin, S., Lin, C., Liu, Z.: Energy-efficient virtual resource dynamic integration method in cloud computing. IEEE Access 5, 12214–12223 (2017)

    Article  Google Scholar 

  37. Yunhua, D., Rynson, W.H. L.: Heat diffusion based dynamic load balancing for distributed virtual environments. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology. ACM (2010)

    Google Scholar 

  38. Mondal, B., Dasgupta, K., Dutta, P.: Load Balancing in Cloud Computing Using Stochastic Hill Climbing—A Soft Computing Approach. Science Direct C3IT (2012)

    Google Scholar 

  39. Zhenzhong, Z., Limin, X., Yuan, T., Tian, J., Shouxin, W., Hua, L.: A model based load balancing method in IaaS cloud. In: 42nd International Conference on Parallel Processing (2013)

    Google Scholar 

  40. Dasgupta, K., Mandal, B., Dutta, P., Mondal, J.K., Dam, S.: A genetic algorithm (GA) based load balancing strategy for cloud computing. In: Proceedings of Elsevier, Procedia Technology (2013)

    Google Scholar 

  41. Mishra, R., Jaiswal, A.: Ant colony optimization: a solution of load balancing in cloud. Int. J. Web Semant. Technol. 3(2), 33–500 (2012)

    Article  Google Scholar 

  42. Babu, D., VenkataKrishna, P.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. ASOC 1894, 1–12 Elsevier B.V (2013)

    Google Scholar 

  43. Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling based on genetic algorithm in cloud computing. In: IEEE 12th International Conference on Dependable Automaton Secure Computing, pp. 146–152 (2014)

    Google Scholar 

  44. Joseph, C.T., Chandrasekaran, K., Cyriac, R.: A novel family genetic approach for virtual machine allocation. Proc. Comput. Sci. 46, 558–565 (2015)

    Google Scholar 

  45. Shojafar, M., Javanmardi, S., Abolfazli, S. (2015), “FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method” Cluster Computing, Vol. 18, pp 829–844

    Google Scholar 

  46. Priya, V., Kumar, C.S., Kannan, R.: Resource scheduling algorithm with load balancing for cloud service provisioning. Appl. Soft Comput. J. 76, 416–424 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Kumar, Y., Kumar, S. (2021). Soft Computing Techniques for Energy Consumption and Resource Aware Allocation on Cloud: A Progress and Systematic Review. In: Dash, S., Pani, S.K., Abraham, A., Liang, Y. (eds) Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing. Studies in Big Data, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-75657-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75657-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75656-7

  • Online ISBN: 978-3-030-75657-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics