Skip to main content

Residual Stresses in Hot Bulk Formed Parts—A Phenomenological Approach for the Austenite-to-Martensite Phase Transformation

  • Conference paper
  • First Online:
Forming the Future

Abstract

In production engineering, current research focuses on the induction of targeted residual stress states in components in order to improve their properties rather than follow the usual path of minimizing residual stresses to prevent failure. In this contribution, a focus is laid on the investigation of the subsequent cooling process of hot bulk formed parts. Such cooling of a component leads to a microscopic phase transformation, which has to be considered in order to compute residual stresses inside the material. A numerical approach based on a phenomenological macroscopic material model is presented to depict the related stress evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macherauch E, Wohlfahrt H, Wolfstied U (1973) Härterei-Technische Mittelungen - Zeitschrift für Werkstoffe. Wärmebehandlung, Fertigung. 28:201–211

    CAS  Google Scholar 

  2. Kloos KH (1979) Eigenspannungen. Definition und Entstehungsursachen. Zeitschrift für Werkstofftechnik. 10:293–302

    Article  Google Scholar 

  3. Withers PJ, Bhadeshia HKDH (2001) Residual stress Part 1 - Measurement techniques. Mater Sci Technol 17:355–365

    Google Scholar 

  4. Withers PJ, Bhadeshia HKDH (2001) Residual stress Part 2 - Nature and origins. Mater Sci Technol 17:366–375

    Google Scholar 

  5. Greenwood GW, Johnson RH (1965) The Deformation of Metals Under Small Stresses During Phase Transformations. Proceedings of the Royal Society of London A 183:403–422

    Google Scholar 

  6. Leblond JB (1989) Mathematical Modelling of Transformation Plasticity in Steels II: Coupling with Strain Hardening Phenomena. Int J Plast 5:573–591

    Google Scholar 

  7. Weisz-Patrault D (2017) Multiphase model for transformation induced plasticity. Extended Leblond’s model. J Mech Phys Solids 106:152–175

    Google Scholar 

  8. Mahnken R, Schneidt A, Antretter T (2009) Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. Int J Plast 25:183–204

    Google Scholar 

  9. Hallberg H, Håkansson P, Ristinmaa M (2010) Thermo-mechanically coupled model of diffusionless phase transformation in austenitic steel. Int J Solids Struct 47:1580–1591

    Google Scholar 

  10. Inoue T (2011) Mechanics and Characteristics of Transformation Plasticity and Metallo-thermo-mechanical Process Simulation. Procedia Eng 10:3793–3798

    Google Scholar 

  11. Zaera R, Rodríguez-Martínez JA, Casado A, Fernández-Sáez J, Rusinek A, Pesci R (2012) A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates. Int J Plast 29:77–101

    Google Scholar 

  12. Ostwald R, Bartel T, Menzel A (2015) An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity. Comp Methods Appl Mech Eng 293:232–265

    Google Scholar 

  13. Tahimi A, Barbe F, Taleb L, Quey R, Guillet A (2012) Evaluation of microstructure-based transformation plasticity models from experiments on 100C6 steel. Comput Mater Sci 52:55–60

    Google Scholar 

  14. Ni J, Wang X, Gong J, Wahab MA (2018) A multi-phase model for transformation plasticity using thermodynamics-based metallurgical algorithm. Int J Mech Sci 148:135–148

    Google Scholar 

  15. Zhang D, Liang Y, Du Z, Mao X (2013) A Material Model for Steel Plates during the Cooling Process. Adv Technol Solut Ind 710:329–333

    Google Scholar 

  16. Connolly DS, Kohar CP, Mishra RK, Inal K (2018) A new coupled thermomechanical framework for modeling formability in transformation induced plasticity steels. Int J Plast 103:39–66

    Google Scholar 

  17. Seupel A, Burgold A, Prüger S, Budnitzki M, Kuna M (2020) Modeling of the thermomechanical behavior, damage, and fracture of high alloy TRIP-steel. In: Biermann H, Aneziris CG (eds) Austenitic TRIP/TWIP steels and steel-zirconia composites: design of tough, transformation-strengthened composites and structures. 723–769

    Google Scholar 

  18. Prüger S, Kiefer B (2020) Towards the crystal plasticity based modeling of TRIP-steels - from material point to structural simulations. In Biermann H, Aneziris CG (eds) Austenitic TRIP/TWIP steels and steel-zirconia composites: design of tough, transformation-strengthened composites and structures. 793–823

    Google Scholar 

  19. Prüger S, Gandhi A, Balzani D (2016) Modeling of low-alloyed TRIP-steels based on direct micro-macro simulations. ECCOMAS Congress 2016:2280–2291

    Google Scholar 

  20. Soliman M, Palkowski H (2008) On factors affecting the phase transformation and mechanical properties of cold-rolled transformation-induced-plasticity-aided steel. Metall Mater Trans A 39:2513

    Google Scholar 

  21. Behrens B-A, Bouguecha A, Bonk C, Chugreev A (2017) Experimental investigations on the transformation-induced plasticity in a high tensile steel under varying thermo-mechanical loading. Comput Methods Mat Sci 17:36–43

    Google Scholar 

  22. Liu J, Li M, Zhang P, Zhu Y, Li S (2020) Experiment research on the transformation plasticity by tensile/compressive stress and transformation kinetics during the martensitic transformation of 30Cr2Ni4MoV steel. Mater Res Express 6:1265g8

    Google Scholar 

  23. Uebing S, Brands D, Scheunemann L, Schröder J (2021) Residual stresses in hot bulk formed parts - two-scale approach for austenite-to-martensite phase transformation. Archive Appl Mech. https://doi.org/10.1007/s00419-020-01836-7

  24. Uebing S, Brands D, Scheunemann L, Schröder J (2021) Residual stresses in hot bulk formed parts - Microscopic stress analysis for austenite-to-martensite phase transformation. Archive Appl Mech. https://doi.org/10.1007/s00419-021-01921-5

  25. Behrens B-A, Chugreev A, Kock C (2019) Macroscopic FE-simulation of residual stresses in thermo-mechanically processed steels considering phase transformation effects. XV. Int Conf Comput Plast. Fundam Appl 211–222

    Google Scholar 

  26. Behrens B-A, Schröder J, Brands D, Scheunemann L, Niekamp R, Chugreev A, Sarhil M, Uebing S, Kock C (2019) Experimental and numerical investigations on the development of residual stresses in thermo-mechanically processed Cr-alloyed steel 1.3505. Metals 9:28

    Google Scholar 

  27. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon and plain carbon steels. Acta Metall 7:59–60

    Google Scholar 

  28. Lemaitre J (2001) Handbook of materials behavior models. Academic Press

    Google Scholar 

  29. Wolff M, Boettcher S, Böhm M (2007) Phase transformations in steels in the multi-phase case-general modelling and parameter identification. Universität Bremen, Zentum für Technomathematik

    Google Scholar 

  30. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer

    Google Scholar 

  31. Wolfram Research, Inc.: Mathematica, Version 12.0. Champaign, IL (2019)

    Google Scholar 

  32. Taylor RL (2020) FEAP - Finite element analysis program. http://projects.ce.berkeley.edu/feap

  33. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20:475–487

    Google Scholar 

Download references

Acknowledgments

This project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—374871564 (BE 1691/223-2, BR 5278/3-2, SCHR 570/33-2) within the priority program SPP 2013. The authors gratefully acknowledge the computing time granted by the Center for Computational Sciences and Simulations (CCSS) of the University of Duisburg-Essen and provided on the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) at the Zentrum für Informations- und Mediendienste (ZIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Uebing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uebing, S. et al. (2021). Residual Stresses in Hot Bulk Formed Parts—A Phenomenological Approach for the Austenite-to-Martensite Phase Transformation. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_196

Download citation

Publish with us

Policies and ethics