Skip to main content

Carbon Sequestration and Climate Change Mitigation

  • Chapter
  • First Online:
An Introduction to Agroforestry

Abstract

This chapter examines the role of agroforestry in carbon sequestration (CS) and climate-change mitigation (CCM) based on the scientific hypotheses, research results, and observations accumulated so far. Since the emergence of climate change (CC) as a prominent global issue in the late twentieth century, agroforestry has received immense attention as a land-management strategy with considerable potential for addressing it. The underlying premise is that photosynthetic carbon capture by trees is an effective strategy for limiting the rise of CO2 concentrations across the globe, and agroforestry systems (AFS), compared with treeless agricultural systems, would lead to higher rates of CS. Following an overview of the commonly used technical terms, the chapter describes the extent, causes, and consequences of climate change; a summary of the global developments in the subject; the mechanisms of soil CS (SCS); and the importance of soil aggregates in SCS. Field research data on SCS reported from multilocational investigations in AFS in different ecological regions of the world as well as meta-analyses of reported results corroborate the higher C storage in AFS compared to single species cropping and grazing systems in both aboveground biomass and soils, especially at lower soil depths. Thus, the adoption of agroforestry practices can be a safe bet for CS and CCM. Brief accounts of some research initiatives and development paradigms related to soil carbon management for CCM are also included in the chapter. These include the potential use of biochar in AFS, and global activities such as Carbon Farming, One Trillion Trees Around the Globe, Regenerative Agriculture, and Soil Carbon Four per Mille (4p 1000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Rajab Y, Leuschner C, Barus H, Tjoa A, Hertel D (2016) Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses. PLoS One 11:e0149949. https://doi.org/10.1371/journal.pone.0149949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Accoe F, Boeckx P, Van Cleemput O, Hofman G, Hui X, Bin H, Chen GX (2002) Characterization of soil organic matter fractions from grassland and cultivated soils via C content and delta C-13 signature. Rapid Commun Mass Spectrom 16:2157–2164

    CAS  PubMed  Google Scholar 

  • Alvarez E, Duque A, Saldarriaga J, Cabrera K, de las Salas G, del Valle I et al (2012) Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For Ecol Manage 267:297–308

    Google Scholar 

  • Angers DA, Chenu C (1997) Dynamics of Soil Aggregation and C Sequestration. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, pp 199–206

    Google Scholar 

  • Artru S, Garré S, Dupraz C, Hiel M-P, Blitz-Frayret C, Lassois L (2017) Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. Eur J Agron 82:60–70. https://doi.org/10.1016/j.eja.2016.10.004

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Google Scholar 

  • Balandier P, Bergez J-E, Etienne M (2003) Use of the management-oriented silvopastoral model ALWAYS: Calibration and evaluation. Agr Syst 57:159–171. https://doi.org/10.1023/A:1024863408559

    Article  Google Scholar 

  • Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79

    CAS  PubMed  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Bauhus J, van Winden AP, Nicotra AB (2004) Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34:686–694

    Google Scholar 

  • Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao with Cordia alliodora and Erythrina poeppigiana in Costa Rica. V. Productivity indices, organic matter models and sustainability over ten years. Agr Syst 12:229–249

    Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    CAS  PubMed  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Google Scholar 

  • Berthrong ST, Piñeiro G, Jobbágy EG, Jackson RB (2012) Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol Appl 22:76–86. https://doi.org/10.1890/10-2210.1

    Article  PubMed  Google Scholar 

  • Biedenbender SH, McClaran MP, Quade J, Weltz MA (2004) Landscape patterns of vegetation change indicated by soil carbon isotope composition. Geoderma 119:69–83

    Google Scholar 

  • Biederman L, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5:202–214. https://doi.org/10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Binkley D, Sollins P (1990) Factors determining differences in soil-pH in adjacent conifer and alder-conifer stands. Soil Sci Soc Am J 54:1427–1433

    CAS  Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj2017.01.0017

  • Borenstein M, Hedges L, Rothstein H (2009) Introduction to Meta-Analysis. In: Introduction to Meta-Analysis. John Wiley, Chichester, UK. https://doi.org/10.1016/B978-0-240-81203-8.00002-7

    Chapter  Google Scholar 

  • Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J Environ Manage 181:484–497. https://doi.org/10.1016/j.jenvman.2016.06.063

    Article  CAS  PubMed  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    CAS  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031

    CAS  PubMed  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Methods for physical separation and characterization of soil organic-matter fractions. Elsevier Science Bv 56:449–457

    Google Scholar 

  • Cambardella CA, Elliott ET (1994) Carbon and nitrogen dynamics of soil organic-matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58:123–130

    Google Scholar 

  • Cardinael R, Chevallier T, Cambou A, Béral C, Barthès BG, Dupraz C, Durand C, Kouakoua E, Chenu C (2017) Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agric Ecosyst Environ 236:243–255. https://doi.org/10.1016/j.agee.2016.12.011

    Article  Google Scholar 

  • Chatterjee N, Nair PKR, Chakraborty S, Nair VD (2018) Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric Ecosyst Environ 266:55–67

    Google Scholar 

  • Chatterjee N, Nair PKR, Nair VD, Viswanath S, Bhattacharjee A (2019) Depth-wise distribution of soil-carbon stock in aggregate-sized fractions under shaded-perennial agroforestry systems in the Western Ghats of Karnataka, India. Agr Syst. https://doi.org/10.1007/s10457-019-00399-z

  • Chatterjee N, Nair PKR, Nair VD, Bhattacharjee A, de Virginio Elias MF, Muschler RG, Noponen M (2020) Do coffee agroforestry systems always improve soil carbon stocks: A case study from Turrialba, Costa Rica. Forests 11(1):49. https://doi.org/10.3390/f11010049

    Article  Google Scholar 

  • Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WB et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20(10):3177–3190

    PubMed  Google Scholar 

  • Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and Organic Matter Storage in Agricultural Soils CRC Press, Boca Raton, pp 97–165

    Google Scholar 

  • Cole DW, Compton JE, Edmonds RL, Homann PS, Vanmiegroet H (1995) Comparison of carbon accumulation in Douglas fir and red alder forests. Carbon Forms and Functions in Forest Soils:527–546

    Google Scholar 

  • Connin SL, Virginia RA, Chamberlain CP (1997) Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. Oecologia 110:374–386

    CAS  PubMed  Google Scholar 

  • Cooperman Y (2016) Biochar and Carbon Sequestration. Agriculture and Natural Resources. University of California, USA

    Google Scholar 

  • Coulibaly YN, Mulia R, Sanou J, Zombre G, Bayala J, Kalinganire A, van Noordwijk M (2014) Crop production under different rainfall and management conditions in agroforestry parkland systems in Burkina Faso: Observations and simulation with WaNuLCAS model. Agr Syst 88:13–28. https://doi.org/10.1007/s10457-013-9651-8

    Article  Google Scholar 

  • Dahal N, Bajracharya RM, Wagle LM (2018) Biochar effects on carbon stocks in the coffee agroforestry systems of the Himalayas. Sustainable Agriculture Research; Vol. 7, No. 4; 2018 ISSN 1927-050X E-ISSN 1927-0518. Published by Canadian Center of Science and Education https://doi.org/10.5539/sar.v7n4p103

  • Dari B, Nair VD, Harris WG, Nair PKR, Sollenberger L, Mylavarapu R (2016) Relative influence of soil-vs. biochar properties on soil phosphorus retention. Geoderma 280:82–87. https://doi.org/10.1016/j.geoderma.2016.06.018

    Article  CAS  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Google Scholar 

  • De Stefano A, Jacobson MG (2017) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agr Syst:1–15. https://doi.org/10.1007/s10457-017-0147-9

  • Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Chang Biol 9:1204–1213

    Google Scholar 

  • Diels J, Vanlauwe B, Van der Meersch MK, Sanginga N, Merckx R (2004) Long-term soil organic carbon dynamics in a subhumid tropical climate: C-13 data in mixed C-3/C-4 cropping and modeling with ROTHC. Soil Biol Biochem 36:1739–1750

    CAS  Google Scholar 

  • Dixon RK, Winjum JK, Schroeder PE (1993) Conservation and sequestration of carbon – the potential of forest and agroforet management – practices. Global Environmental Change-Human and Policy Dimensions 3:159–173

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agr Syst 72:103–115. https://doi.org/10.1007/s10457-007-9075-4

    Article  Google Scholar 

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: Challenges and opportunities. Agr Syst 51:177–188

    Google Scholar 

  • Dupraz C, Lecomte I (2019) Update and use directions of the Hi-sAFe agroforestry model. INRA, UMR System, University of Montpellier 236 pp. Available at: https://www1.montpellier.inra.fr/wp-inra/hi-safe/en/publications/

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated Soils. Soil Sci Soc Am J 50:627–633. https://doi.org/10.2136/sssaj1986.03615995005000030017x

    Article  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Elliott ET, Palm CA, Reuss DE, Monz CA (1991) Organic-matter contained in soil aggregates from a tropical chronosequence – correction for sand and light fraction. Agric Ecosyst Environ 34:443–451

    Google Scholar 

  • FAO (2007) The State of Food and Agriculture. FAO Agriculture Series No 38. Rome

    Google Scholar 

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129. https://doi.org/10.1016/j.agee.2017.11.032

    Article  Google Scholar 

  • Filho CC, Lourenco A, Guimaraes MDF, Fonseca ICB (2002) Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Tillage Res 65:45–51

    Google Scholar 

  • Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes PM (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. J Plant Nutr Soil Sci 171:36–51

    CAS  Google Scholar 

  • Forrester DI, Bauhu SJ, Cowie AL (2006) Carbon allocation in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manage 233:275–284

    Google Scholar 

  • Freitas AM, Nair VD, Sollenberger LE, Harris WG (2018) Poultry litter biochar as an alternative to inorganic phosphorus fertilizer in a year-round cropping system. 21st World Congress of Soil Science. August 2018, Rio de Janeiro, Brazil

    Google Scholar 

  • Freitas AM, Nair VD, Harris WG (2020) Biochar as influenced by feedstock variability: Implications and opportunities for nutrient management. Front Sustain Food Syst 4:510982. https://doi.org/10.3389/fsufs.2020.510982

    Article  Google Scholar 

  • Friedlingstein P, Allen M, Canadell JG, Peters GP, Sonia I, Seneviratne SI (2019) Comment on “The global tree restoration potential”. Science 18 October 2019, pp 1–2 https://doi.org/10.1126/science.aay.8060

  • Gale WJ, Cambardella CA, Bailey TB (2000) Root-derived carbon and the formation and stabilization of aggregates. Soil Sci Soc Am J 64:201–207

    CAS  Google Scholar 

  • Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia. Brazil Environm Manage 45:274–283. https://doi.org/10.1007/s00267-009-9420-7

    Article  Google Scholar 

  • Gao S, DeLuca TH, Cleveland CC (2019) Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci Total Environ 654:463–482. https://doi.org/10.1016/j.scitotenv.2018.11.124

    Article  CAS  PubMed  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans Biol Sci 362(2007):187–196

    CAS  Google Scholar 

  • Glaser B, Lehr V-R (2019) Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci Rep. https://doi.org/10.1038/s41598-019-45693-z

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41. https://doi.org/10.1007/s001140000193

    Article  CAS  PubMed  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Soil-structure and carbon cycling. Aust J Soil Res 32:1043–1068

    Google Scholar 

  • Grist P, Menz K, Nelson R (1999) Multipurpose trees as improved fallow: An economic assessment. Int Tree Crops J10:19–36. https://doi.org/10.1080/01435698.1999.9752989

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: A meta analysis. Glob Chang Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon Storage of Different Soil-Size Fractions in Florida Silvopastoral Systems. J Environ Qual 37:1789–1797. https://doi.org/10.2134/jeq2007.0509

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Chang Biol 16:427–438. https://doi.org/10.1111/j.1365-2486.2009.01981.x

    Article  Google Scholar 

  • Hairiah K, van Noordwijk M, Saria RR, Saputraa DD, Widiantoa, Suprayogoa D, Kurniawana S, Prayogoa C, Guslid S (2020) Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Vol 294 https://doi.org/10.1016/j.agee.2020.106879

  • Hassink J, Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61:131–139

    CAS  Google Scholar 

  • Haynes RJ, Beare MH (1997) Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol Biochem 29:1647–1653

    CAS  Google Scholar 

  • Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V (2018) APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ Modell Softw 103:43–51. https://doi.org/10.1016/j.envsoft.2018.02.002

    Article  Google Scholar 

  • Horn R, Smucker A (2005) Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res 82:5–14

    Google Scholar 

  • Howlett DS, Moreno G, Mosquera-Losada MR, Nair PKR, Nair VD (2011a) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monit 13:1897–1904

    CAS  PubMed  Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair PKR, Nair VD, Rigueiro-Rodríguez A (2011b) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:825–832. https://doi.org/10.2134/jeq2010.0145

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2000) IPCC Special Report: Emissions Scenarios. 2000

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team RK Pachauri, LA Meyer (eds)] IPCC, Geneva, Switzerland, 151 pp

    Google Scholar 

  • IPCC (2018) An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse as Emission Pathways

    Google Scholar 

  • Ippolito JA, Laird DA, Bussche WJ (2012) Environmental benefits of biochar. J Environ Qual 41. https://doi.org/10.2134/jeq2012.0151

  • Jackson NA, Wallace JS, Ong CK (2000) Tree pruning as a means of controlling water use in an agroforestry system in Kenya. For Ecol Manage 126:133–148

    Google Scholar 

  • Janik LJ, Skjemstad JO, Shepherd KD, Spouncer LR (2007) The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Aust J Soil Res 45:73–81

    CAS  Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil Aggregate Stabilization and Carbon Sequestration: Feedbacks through Organomineral Associations. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, pp 207–223

    Google Scholar 

  • Jenkinson DS (1990) The turnover of organic-carbon and nitrogen in soil. Phios Trans R Soc London Series B-Biological Sciences 329:361–368

    CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120

    CAS  Google Scholar 

  • Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: An overview. Agr Syst 86:105–111. https://doi.org/10.1007/s10457-012-9573-x

    Article  Google Scholar 

  • Joseph S, Pow D, Dawson K, Rust J, Munroe P, Taherymoosavi S, Mitchell DRG, Robb S, Solaiman ZM (2020) Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci Total Environ 724(1) July 2020:138153

    CAS  PubMed  Google Scholar 

  • Kaiser K, Eusterhues K, Rumpel C, Guggenberger G, Kogel-Knabner I (2002) Stabilization of organic matter by soil minerals – investigations of density and particle-size fractions from two acid forest soils. J Plant Nutr Soil Sci 165:451–459

    CAS  Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvopastoral systems on a sodic soil in northwestern India. Agr Syst 54:21–29

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, et al. (2003) An overview of (PDF) Modelling agroforestry systems

    Google Scholar 

  • Kim D-G, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agric Ecosyst Environ 226:65–78. https://doi.org/10.1016/j.agee.2016.04.011

    Article  CAS  Google Scholar 

  • Kimble JM, Lal R, Follett RF (2001) Methods for Assessing Soil C Pools. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment Methods for Soil Carbon. Lewis Publishers, Boca Raton, pp 3–12

    Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For Ecol Manage 246:208–221

    Google Scholar 

  • Kogel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Luetzow M (2008) An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13

    Google Scholar 

  • Kumar BM, Kumar SS, Fisher RF (1998) Intercropping teak with Leucaena increases tree growth and modifies soil characteristics. Agr Syst 42:81–89

    Google Scholar 

  • Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444

    Google Scholar 

  • Lal R (2001) Soils and the Greenhouse Effect. In: Lal R (ed) Soil carbon sequestration and the greenhouse effect. Soil Sci Soc Am, Madison, WI, pp 1–26

    Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. In: Environmental services of agroforestry systems. First World Congress on Agroforestry, Orlando, Florida, USA, 27 June 2-July 2004 Food Products Press. Vol 21 pp 1–30

    Google Scholar 

  • Lal R (2006) Impacts of Climate on Soil Systems and of Soil Systems on Climate. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological Approaches to Sustainable Soil Systems. Taylor and Francis Group, Boca Raton, pp 617–636

    Google Scholar 

  • Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81:113–127

    Google Scholar 

  • Lal R (2020) Regenerative agriculture for food and climate. J Soil Water Conserv. https://doi.org/10.2489/jswc.2020.0620A

  • Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair PKR, McBratney AB, de Moraes Sá JC, Schneider J, Zinn YL (2018) The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv 73:145A–152A

    Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management : An introduction. Sci Technol 1:1–12. https://doi.org/10.1016/j.forpol.2009.07.001

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems review. Mitig Adapt Strat Glob Chang 11:403–427. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD (2006) Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Pergamon-Elsevier Science Ltd 38:3184–3196

    CAS  Google Scholar 

  • Lin BB, Macfadyen S, Renwick AR, Cunningham SA, Schellhorn NA (2013) Maximizing the environmental benefits of carbon farming through ecosystem service delivery. Bioscience 63(10):793–803. https://doi.org/10.1525/bio.2013.63.10.6

    Article  Google Scholar 

  • Lojka B, Lojkova J, Banout J, Polesny Z, Preininger D (2007) Performance of an improved fallow system in the Peruvian Amazon—Modelling approach. Agr Syst 72:27–39. https://doi.org/10.1007/s10457-007-9079-0

    Article  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. https://doi.org/10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Luedeling E, Smethurst PJ, Baudron F, Bayala J, Huth NI, van Noordwijk M, Ong CK, Mulia R, Lusiana B, Muthuri C, et al. (2016) Field-scale modeling of tree–crop interactions: Challenges and development needs. Agri Syst 142:51–69. doi:10.1016/j.agsy.2015.11.005 (PDF) Modelling agroforestry systems. Available from: https://www.researchgate.net/publication/333696631_Modelling_agroforestry_systems [accessed Mar 13 2020]

  • Macintosh A (2013) The Carbon Farming Initiative: removing the obstacles to its success. Carbon Management 4(2):185–202. https://doi.org/10.4155/cmt.13.9]

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schaeffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    CAS  Google Scholar 

  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol Model 164:177–199

    CAS  Google Scholar 

  • McClaran MP, McPherson GR (1995) Can soil organic carbon isotopes be used to describe grass-tree dynamics at a savanna-grassland ecotone and within the savanna? J Veg Sci 6:857–862

    Google Scholar 

  • McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM (1996) APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agr Syst 50:255–271

    Google Scholar 

  • Medlyn BE, McMurtrie RE, Dewar RC, Jeffreys MP (2000) Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. Can J For Res 30:873–888

    Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    CAS  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agr Syst 61–62:281–295. https://doi.org/10.1023/B:AGFO.0000029005.92691.79

    Article  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Google Scholar 

  • Nair PKR (1979) Intensive Multiple Cropping with Coconuts in India: Principles, Programmes and Prospects. Verlag Paul Parey, Berlin and Hamburg

    Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: A reality-check. Agr Syst 86:243–253. https://doi.org/10.1007/s10457-011-9434-z

    Article  Google Scholar 

  • Nair VD (2014) Soil Phosphorus Saturation Ratio for Risk Assessment in Land Use Systems. Front Environ Sci 2. https://doi.org/10.3389/fenvs.2014.00006

  • Nair PKR, Nair VD (2003) Carbon storage in North American agroforestry systems. In: Heath LS, Birdsey RA, Lal R (eds) Kimble J. The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton, USA, pp 333–346

    Google Scholar 

  • Nair PKR, Nair VD (2014) “Solid-Fluid-Gas”: The State of Knowledge on Carbon Sequestration Potential of Agroforestry Systems in Africa. Curr Opin Environ Sustain 6:22–27

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. https://doi.org/10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Haile SG (2009b) Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ Sci Policy 12:1099–1111

    CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    CAS  Google Scholar 

  • Nair VD, Nair PKR, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the Agroecosystem–Climate-Change Nexus. Front Plant Sci 8:2051. https://doi.org/10.3389/fpls.2017.02051

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath AN, Lal R, Sileshi GW, Das AK (2018) Managing India’s small landholder farms for food security and achieving the “4 per Thousand” target. Sci Total Environ 634:1024–1033. https://doi.org/10.1016/j.scitotenv.2018.03.382

    Article  CAS  PubMed  Google Scholar 

  • Nayak AK, Rahman MM, Naidu R, Dhal B, Swain CK, Nayak AD, Tripathi R, Shahid M, Islam MR, Pathak H (2019) Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci Total Environ 665:890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125

    Article  CAS  PubMed  Google Scholar 

  • Nocita M, Stevens A, van Wesemael B, Brown DJ, Shepherd KD, Towett E, Vargase R, Montanrella L (2014) Soil spectroscopy: an opportunity to be seized. Glob Chang Biol. https://doi.org/10.1111/gcb.12632

  • Novak JM, Lima IM, Xing B, Gaskin JW, Steiner C, Das KC et al (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ Sci 3:195–206

    CAS  Google Scholar 

  • Oades JM (1984) Soil organic-matter and structural stability – mechanisms and implications for management. Plant and Soil 76:319–337

    CAS  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Google Scholar 

  • Oelbermann M, Voroney RP, Thevathasan NV, Gordon AM, Kass DCL, Schlonvoigt AM (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agr Syst 68:27–36

    Google Scholar 

  • Ojima DS, Kittel TGF, Rosswall T (1991) Critical issues for understanding global change effects on terrestrial ecosystems. Ecol Appl 1:316–325

    CAS  PubMed  Google Scholar 

  • Panwar P, Chauhan S, Kaushal R, Das DK, Ajit A, Gurveen C, Om P, Jain AK, Chaturvedi S, Tewari S (2017) Carbon sequestration potential of poplar-based agroforestry using the CO2FIX model in the Indo-Gangetic Region of India. Trop Ecol 58:439–447

    Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For Ecol Manage 124:45–77

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Sci Soc Am J 51:1173–1179

    CAS  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57. https://doi.org/10.1038/nature17174

    Article  CAS  PubMed  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, Southern Ontario, Canada. Agrofor Syst 66:243–257

    Google Scholar 

  • Pinheiro FM, Nair PKR, Nair VD, Tonucci RG, Venturin RP (2021) Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J Environ Manag 299:113676. https://doi.org/10.1016/j.jenvman.2021.113676

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agric Ecosyst Environ 200:33–41. https://doi.org/10.1016/j.agee.2014.10.024

    Article  CAS  Google Scholar 

  • Pogson M, Richards M, Dondini M, Jones EO, Hastings A, Smith P (2016) ELUM: A spatial modelling tool to predict soil greenhouse gas changes from land conversion to bioenergy in the UK. Environ Modell Softw 84:458–466. https://doi.org/10.1016/j.envsoft.2016.07.011

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: Processes and potential. Glob Chang Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Puget P, Chenu C, Balesdent J (2000) Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci 51:595–605

    Google Scholar 

  • Pugnaire FI, Haase P, Puigdefábregas J, Cueto M, Clark SC, Incoll LD (1996) Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi- arid environment in south- east Spain. Oikos 76:455–464

    Google Scholar 

  • Redondo-Brenes A (2007) Growth, carbon sequestration, and management of native tree plantations in humid regions of Costa Rica. New Forests 34:253–268

    Google Scholar 

  • Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Mange 232:168–178

    Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    CAS  Google Scholar 

  • Rethemeyer J, Grootes PM, Bruhn F, Andersen N, Nadeau MJ, Kramer C, Gleixner G (2004) Age heterogeneity of soil organic matter. Elsevier Science Bv 223:521–527

    Google Scholar 

  • Rethemeyer J, Kramer C, Gleixner G, John B, Yamashita T, Flessa H, Andersen N, Nadeau MJ, Grootes PM (2005) Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Elsevier Science Bv 128:94–105

    CAS  Google Scholar 

  • Rhoades CC (1997) Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agr Syst 35:71–94

    Google Scholar 

  • Richards M, Pogson M, Dondini M, Jones EO, Hastings A, Henner DN, Tallis MJ, Casella E, Matthews RW, Henshall PA, Milner S, Taylor G, McNamara NP, Smith JU, Smith P (2017) High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom. GCB Bioenergy 9:627–644. https://doi.org/10.1111/gcbb.12360

    Article  CAS  Google Scholar 

  • Roshetko JM, Delaney M, Hairiah K, Purnomosidhi P (2002) Carbon stocks in Indonesian homegarden systems: can smallholder systems be targeted for increased carbon storage? Am J Altern Agric 17:138–148

    Google Scholar 

  • Rumpel C, Amiraslani F, Chenu C, Cardenas MG, Kaonga M, Koutika L-S, Ladha J, Madari B, Shirato Y, Smith P, Soudi B, Soussana J-F, Whitehead D, Wollenberg E (2019, 2019) The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio. https://doi.org/10.1007/s13280-019-01165-2

  • Russell AE, Kumar BM (2019) Modeling experiments for evaluating the effects of trees, increasing temperature, and soil texture on carbon stocks in agroforestry systems in Kerala. India Forests 2019(10):803. https://doi.org/10.3390/f10090803

    Article  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agr Syst 76:53–65

    Google Scholar 

  • Saha S, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size-fractions under some tropical tree-based land-use systems. Plant and Soil 328:433–446. https://doi.org/10.1007/s11104-009-0123-x

    Article  CAS  Google Scholar 

  • Salazar O, Casanova M, Kätterer T (2011) The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agric Ecosyst Environ 140:123–136. https://doi.org/10.1016/j.agee.2010.11.019

    Article  CAS  Google Scholar 

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci 114:9575–9580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkhot DV, Comerford NB, Jokela EJ, Reeves JB, Harris WG (2007) Aggregation and aggregate carbon in a forested southeastern coastal plain spodosol. Soil Sci Soc Am J 71:1779–1787

    CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    CAS  PubMed  Google Scholar 

  • Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manage 163:131–150

    Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agr Syst 60:123–130

    Google Scholar 

  • Shepherd D, Montagnini F (2001) Above ground carbon sequestration potential in mixed and pure tree plantations in the humid tropics. J Trop For Sci 13:450–459

    Google Scholar 

  • Shepherd KD, Walsh MG (2007) Infrared spectroscopy: enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J Near and Infrared Spectroscopy 15:1–19

    CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Google Scholar 

  • Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust J Soil Res 42:79–88

    CAS  Google Scholar 

  • Smethurst PJ, Huth NI, Masikati P, Sileshi GW, Akinnifesi FK, Wilson J, Sinclair F (2017) Accurate crop yield predictions from modelling tree-crop interactions in Gliricidia-maize agroforestry. Agr Syst 155:70–77. https://doi.org/10.1016/j.agsy.2017.04.008

    Article  Google Scholar 

  • Smith P, Soussana J-F, Angers D, Schipper L, Chenu C, Rasse DP, Batjes NH, van Egmond F, McNeill S, Kuhnert M, Arias-Navarro C, Olesen JE, Chirinda N, Fornara D, Wollenberg E, Alvaro-Fuentes J, Sanz-Cobena A, Klumpp K (2019) How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob Chang Biol. https://doi.org/10.1111/gcb.14815

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 74:65–105

    Google Scholar 

  • SSSA (2001) Carbon Sequestration: Position of the Soil Science Society of America (SSSA). Available at www.soils.org/pdf/pos_paper_carb_seq.pdf (last accessed on 13 March 2020)

  • Staddon PL (2004) Carbon isotopes in functional soil ecology. Trends Ecol Evol 19:148–154

    PubMed  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, eveidence and evaluation. Biogeochemistry 86:19–31. https://doi.org/10.1007/s10533-007-9140-0

    Article  CAS  Google Scholar 

  • Stock WD, Wienand KT, Baker AC (1995) Impacts of invading N-2-fixing Acacia species on patterns of nutreint cycling in 2 Cape ecosystems - evidence from soil incubation studies and N-15 natural-abundance values. Oecologia 101:375–382

    CAS  PubMed  Google Scholar 

  • Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121–1130

    CAS  Google Scholar 

  • Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP, Macko SA (2004) Natural abundance of C-13 and N-15 in C-3 and C-4 vegetation of southern Africa: patterns and implications. Glob Chang Biol 10:350–358

    Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    CAS  Google Scholar 

  • Takimoto A, Nair VD, Nair PKR (2009) Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel. Agr Syst 76:11–25

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic-matter and water-stable aggregates in soils. J Soil Sc 33:141–163

    CAS  Google Scholar 

  • Toensmeier E (2016) The Carbon Farming Solution: A global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing, White River Junction, Vermont

    Google Scholar 

  • Tonucci RG, Nair PKR, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado. J Environ Qual 40: 883–841. https://doi.org/10.2134/jeq2010.0162

  • Tonucci RG, Nair VD, Nair PKR, Garcia R (2017) Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian cerrado. Plant and Soil. https://doi.org/10.1007/s11104-017-334

  • Udawatta RP, Jose S (2011) Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar BM, Nair PKR (eds) Carbon Sequestration in Agroforestry Systems: Opportunities and Challenges. The Netherlands, Springer, Dordrecht, pp 17–42

    Google Scholar 

  • Udawatta RP, Kremer RJ, Adamson BW, Anderson SH (2008) Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl Soil Ecol 39:153–160

    Google Scholar 

  • UNFCCC (2007) Report of the conference of parties on its thirteenth session, Bali, Indonesia. In: United Nations Framework Convention on Climate Change, Geneva, Switzerland, UN

    Google Scholar 

  • Upson MA, Burgess PJ, Morison JIL (2016) Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma 283:10–20. https://doi.org/10.1016/j.geoderma.2016.07.002

    Article  CAS  Google Scholar 

  • Vågen TG, Davey FA, Shepherd KD (2012) Mapping for soil carbon in rangelands. In: Nair PKR, Garrity DP (eds) Agroforestry – The Future of Global Land Use. Springer, Dordrecht, The Netheralnds, pp 455–462

    Google Scholar 

  • van der Gaast WP, Spijker E (2013) Biochar and the Carbon Market: A review of carbon market development perspectives and biochar offset projects GHG accounting aspects. A publication of the Interreg IVB project Biocnar: climate saving soils. Joint Implementation Network, The Netherlands p 40

    Google Scholar 

  • van der Werf W, Keesman K, Burgess PJ, Graves AR, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H et al (2007) Yield-SAFE: A parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems. Ecol Eng 29:419–433. https://doi.org/10.1016/j.ecoleng.2006.09.017

    Article  Google Scholar 

  • Van Noordwijk M (ed) (2019) Sustainable development through trees on farms: Agroforestry in its fifth decade. World Agroforestry, Bogor, Indonesia

    Google Scholar 

  • van Oijen M, Dauzat J, Harmand JM, Lawson G, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agr Syst 80:361–378. https://doi.org/10.1007/s10457-010-9291-1

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    CAS  Google Scholar 

  • von Luetzow M, Kogel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124

    Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    CAS  Google Scholar 

  • Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decompsition and priming effects. CGB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266

    Article  CAS  Google Scholar 

  • Wardle DA (1992) A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–358

    Google Scholar 

  • WCED (1987) Our Common Future: The Brundtland Commission Report. World Commission on Environment and Development. Oxford Univ press, London

    Google Scholar 

  • Williams ND, Petticrew EL (2009) Aggregate stability in organically and conventionally farmed soils. Soil Use Manage 25:284–292

    Google Scholar 

  • Young A, Menz K, Muraya P, Smith C (1998) SCUAF Version 4: A model to estimate soil changes under agriculture, agroforestry and forestry. ACIAR Technical Reports Series No. 41, 49 pp. Available at: https://www.aciar.gov.au/node/7226 (PDF) Modelling agroforestry systems

  • Zhou H, Zhang D, Wang P, Liu X, Cheng K, Li L, Zheng J, Zhang X, Zheng J, Crowley D, van Zweitan L, Pan G (2017) Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agric Ecosyst Environ 239:80–89. https://doi.org/10.1016/j.agee.2017.01.006

    Article  CAS  Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper No. 89 (World Agroforestry Centre (ICRAF), 2009). Available at: http://www.worldagroforestry.org/downloads/Publications/PDFs/WP16263.PDF

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://www.nature.com/scientificreports

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, P.K.R., Kumar, B.M., Nair, V.D. (2021). Carbon Sequestration and Climate Change Mitigation. In: An Introduction to Agroforestry. Springer, Cham. https://doi.org/10.1007/978-3-030-75358-0_20

Download citation

Publish with us

Policies and ethics