Skip to main content

Advantages of Cardiac CT Scan over Other Diagnostic Techniques

  • Chapter
  • First Online:
Pediatric Cardiac CT in Congenital Heart Disease
  • 754 Accesses

Abstract

Congenital heart disease is generally evaluated with the use of echocardiography. Transthoracic echocardiography image quality may be suboptimal due to poor acoustic window with limited depiction of extracardiac vascular structures. Catheter angiography produces overlapping views of adjacent vascular structures, causing difficulty in the simultaneous depiction of the systemic and pulmonary vascular systems, leads to undesirable catheter-related sequelae (vascular injury), and delivers relatively high doses of ionizing radiation. Even though magnetic resonance imaging (MRI) is eminently capable in the anatomic and functional evaluation of the heart, it is time-consuming and often requires lengthy sedation; therefore, the use of MRI in seriously ill newborns or young infants is usually restricted. Cardiac computed tomography (CT) is the preferred imaging modality for evaluation of young infants with coronary anomaly, major aortopulmonary collaterals or airway issues. Cardiac CT gives superior image quality for three-dimensional modeling and image fusion with fluoroscopy or merged to electroanatomic mapping to precisely visualize complex anatomy and guide intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dodge-Khatami J, Adebo DA. Evaluation of complex congenital heart disease in infants using low dose cardiac computed tomography. Int J Cardiovasc Imaging. 2021. https://doi.org/10.1007/s10554-020-02118-7.

  2. Vyas HV, Greenberg SB, Krishnamurthy R. MR imaging and CT evaluation of congenital pulmonary vein abnormalities in neonates and infants. Radiographics. 2012;32(1):87–98.

    Article  PubMed  Google Scholar 

  3. Han BK, Overman DM, Grant K, et al. Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr. 2013;7(6):354–60.

    Article  PubMed  Google Scholar 

  4. Khairy P, Van Hare GF, Balaji S, et al. PACES/HRS Expert Consensus Statement on the recognition and management of arrhythmias in adult congenital heart disease. Heart Rhythm. 2014;11:102–65.

    Article  Google Scholar 

  5. Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging. 2010;3:112–25.

    Article  PubMed  Google Scholar 

  6. Han BK, Lesser AM, Vezmar M, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013;7:361–6.

    Article  PubMed  Google Scholar 

  7. Yu FF, Lu B, Gao Y, et al. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr. 2013;7:383–90.

    Article  PubMed  Google Scholar 

  8. Attili A, Hensley AK, Jones FD, Grabham J, DiSessa TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography. 2013;30:225–33.

    Article  PubMed  Google Scholar 

  9. Kaushal S, Backer CL, Popescu AR, et al. Intramural coronary length correlates with symptoms in patients with anomalous aortic origin of the coronary artery. Ann Thorac Surg. 2011;92:986–91.

    Article  PubMed  Google Scholar 

  10. Lee HJ, Hong YJ, Kim HY, et al. Anomalous origin of the right coronary artery from the left coronary sinus with an interarterial course: subtypes and clinical importance. Radiology. 2012;262:101–8.

    Article  PubMed  Google Scholar 

  11. Cheng Z, Wang X, Duan Y, et al. Detection of coronary artery anomalies by dual-source CT coronary angiography. Clin Radiol. 2010;65:815–22.

    Article  CAS  PubMed  Google Scholar 

  12. Schmitt R, Froehner S, Brunn J, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur Radiol. 2005;15:1110–21.

    Article  PubMed  Google Scholar 

  13. Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH. Multislice CT imaging of anomalous coronary arteries. Eur Radiol. 2004;14:2172–81.

    Article  PubMed  Google Scholar 

  14. Zhang LJ, Wu SY, Huang W, Zhou CS, Lu GM. Anomalous origin of the right coronary artery originating from the left coronary sinus of valsalva with an interarterial course: diagnosis and dynamic evaluation using dual-source computed tomography. J Comput Assist Tomogr. 2009;33:348–53.

    Article  PubMed  Google Scholar 

  15. Lee BY, Song KS, Jung SE, et al. Anomalous right coronary artery originated from left coronary sinus with interarterial course: evaluation of the proximal segment on multidetector row computed tomography with clinical correlation. J Comput Assist Tomogr. 2009;33:755–62.

    Article  PubMed  Google Scholar 

  16. Opolski MP, Pregowski J, Kruk M, et al. Prevalence and characteristics of coronary anomalies originating from the opposite sinus of Valsalva in 8,522 patients referred for coronary computed tomography angiography. Am J Cardiol. 2013;111:1361–7.

    Article  PubMed  Google Scholar 

  17. Miller JA, Anavekar NS, El Yaman MM, Burkhart HM, Miller AJ, Julsrud PR. Computed tomographic angiography identification of intramural segments in anomalous coronary arteries with interarterial course. Int J Cardiovasc Imaging. 2012;28:1525–32.

    Article  PubMed  Google Scholar 

  18. Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Korperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging. 2009;29:320–7.

    Article  PubMed  Google Scholar 

  19. Prakken NH, Cramer MJ, Olimulder MA, Agostoni P, Mali WP, Velthuis BK. Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography. Int J Cardiovasc Imaging. 2010;26:701–10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ramos-Duran L, Nance JW Jr, Schoepf UJ, Henzler T, Apfaltrer P, Hlavacek AM. Developmental aortic arch anomalies in infants and children assessed with CT angiography. Am J Roentgenol. 2012;198:W466–74.

    Article  Google Scholar 

  21. Di Sessa TG, Di Sessa P, Gregory B, Vranicar M. The use of 3D contrast enhanced CT reconstructions to project images of vascular rings and coarctation of the aorta. Echocardiography. 2009;26:76–81.

    Article  PubMed  Google Scholar 

  22. Yang DH, Goo HW, Seo DM, et al. Multislice CT angiography of interrupted aortic arch. Pediatr Radiol. 2008;38:89–100.

    Article  PubMed  Google Scholar 

  23. Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging. 2007;22:300–9.

    Article  PubMed  Google Scholar 

  24. Lee EY, Zurakowski D, Waltz DA, et al. MDCT evaluation of the prevalence of tracheomalacia in children with mediastinal aortic vascular anomalies. J Thorac Imaging. 2008;23:258–65.

    Article  PubMed  Google Scholar 

  25. Jhang WK, Park JJ, Seo DM, Goo HW, Gwak M. Perioperative evaluation of airways in patients with arch obstruction and intracardiac defects. Ann Thorac Surg. 2008;85:1753–8.

    Article  PubMed  Google Scholar 

  26. An HS, Choi EY, Kwon BS, et al. Airway compression in children with congenital heart disease evaluated using computed tomography. Ann Thorac Surg. 2013;96:2192–7.

    Article  PubMed  Google Scholar 

  27. Zhong YM, Jaffe RB, Liu JF, et al. Multi-slice computed tomography assessment of bronchial compression with absent pulmonary valve. Pediatr Radiol. 2014;44:803–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee KS, Boiselle PM. Update on multidetector computed tomography imaging of the airways. J Thorac Imaging. 2010;25:112–24.

    Article  PubMed  Google Scholar 

  29. Watanabe N, Hayabuchi Y, Inoue M, et al. Tracheal compression due to an elongated aortic arch in patients with congenital heart disease: evaluation using multidetector-row CT. Pediatr Radiol. 2009;39:1048–53.

    Article  PubMed  Google Scholar 

  30. Jiao H, Xu Z, Wu L, et al. Detection of airway anomalies in pediatric patients with cardiovascular anomalies with low dose prospective ECG-gated dual source CT. PLoS One. 2013;8:82826.

    Article  CAS  Google Scholar 

  31. Hayabuchi Y, Inoue M, Watanabe N, et al. Assessment of systemic-pulmonary collateral arteries in children with cyanotic congenital heart disease using multidetector-row computed tomography: comparison with conventional angiography. Int J Cardiol. 2010;138:266–71.

    Article  PubMed  Google Scholar 

  32. Meinel FG, Huda W, Schoepf UJ, et al. Diagnostic accuracy of CT angiography in infants with tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Cardiovasc Comput Tomogr. 2013;7:367–75.

    Article  PubMed  Google Scholar 

  33. Greil GF, Schoebinger M, Kuettner A, et al. Imaging of aortopulmonary collateral arteries with high-resolution multidetector CT. Pediatr Radiol. 2006;36:502–9.

    Article  PubMed  Google Scholar 

  34. Auricchio A, Sorgente A, Soubelet E, et al. Accuracy and usefulness of fusion imaging between three-dimensional coronary sinus and coronary veins computed tomographic images with projection images obtained using fluoroscopy. Europace. 2009;11:1483–90.

    Article  PubMed  Google Scholar 

  35. Krishnaswamy A, Tuzcu EM, Kapadia SR. Three-dimensional computed tomography in the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011;77:860–5.

    Article  PubMed  Google Scholar 

  36. Chad Kliger MD, Vladimir Jelnin MD, Sonnit Sharma MD, et al. CT angiography-fluoroscopy fusion imaging for percutaneous transseptal access. JACC Cardiovasc Imaging. 2014;7:169–77.

    Article  PubMed  Google Scholar 

  37. Duckett SG, Ginks MR, Knowles BR, et al. Advanced image fusion to overlay coronary sinus anatomy with real-time fluoroscopy to facilitate left ventricular lead implantation in CRT. Pacing Clin Electrophysiol. 2011;34:226–34.

    Article  PubMed  Google Scholar 

  38. Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg. 2010;37:302–6.

    PubMed  Google Scholar 

  39. Valverde I, Gomez-Ciriza G, Hussain T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg. 2017;52:1139–48.

    Article  PubMed  Google Scholar 

  40. Yim D, Dragulescu A, Ide H, et al. Essential modifiers of double outlet right ventricle: revisit with endocardial surface images and 3-dimensional print models. Circ Cardiovasc Imaging. 2018;11:006891.

    Google Scholar 

  41. Yoo SJ, van Arsdell GS. 3D printing in surgical management of double outlet right ventricle. Front Pediatr. 2018;5:289.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoashi T, Ichikawa H, Nakata T, et al. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery. Interact Cardiovasc Thorac Surg. 2018;27:749–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilachew A. Adebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adebo, D.A. (2021). Advantages of Cardiac CT Scan over Other Diagnostic Techniques. In: Adebo, D.A. (eds) Pediatric Cardiac CT in Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-74822-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74822-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74821-0

  • Online ISBN: 978-3-030-74822-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics