Skip to main content

Surface Reactivity of Carbon Nanoporous Materials Studied with Chemical Bromination

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 264))

Included in the following conference series:

Abstract

An electrophilic bromination is used as a probe reaction to assess the reactivity of a carbon surface, as well as to prepare versatile precursors for multifunctional modifications. In this chapter, we consider the bromination of nanoporous carbon materials with liquid bromine and KBr3. This bromination was performed under different reaction protocols. Here, we report the parallel oxidation and hydrolysis during bromination and show their effect on surface chemistry. Also, the pros and cons of the usage of the proposed reaction  are considered.  The surface oxidation and modification rules are discussed, and the amount of introduced bromine that can be substituted by a nucleophile is presented. In general, the potential for obtaining chemically uniform surfaces covered with amino groups by amination of the surface of brominated carbon materials has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedoseeva YV, Orekhov AS, Chekhova GN, Koroteev VO, Kanygin MA, Senkovskiy BV, Chuvilin A, Pontiroli D, Riccò M, Bulusheva LG, Okotrub AV (2017) Single-walled carbon nanotube reactor for redox transformation of mercury dichloride. ACS Nano 11:8643–8649. https://doi.org/10.1021/acsnano.7b04361

    Article  Google Scholar 

  2. Mansour AE, Dey S, Amassian A, Tanielian MH (2015) Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses. ACS Appl Mater Interfaces 7:17692–17699. https://doi.org/10.1021/acsami.5b03274

    Article  Google Scholar 

  3. Strauch J, Anis B, Kuntscher CA (2014) High-pressure optical study of bromine-doped single-walled carbon nanotube films. Phys Status Solidi B 251:2378–2383. https://doi.org/10.1002/pssb.201451160

    Article  ADS  Google Scholar 

  4. Bulusheva LG, Tur VA, Fedorovskaya EO, Asanov IP, Pontiroli D, Riccò M, Okotrub AV (2014) Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon 78:137–146. https://doi.org/10.1016/j.carbon.2014.06.061

    Article  Google Scholar 

  5. Barpanda P, Amatucci G (2008) Structure and electrochemistry of carbon-bromine nanocomposite electrodes for electrochemical energy storage. MRS Proc 1127:8–13. https://doi.org/10.1557/proc-1127-t01-11

    Article  Google Scholar 

  6. Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon 49:2538–2548

    Article  Google Scholar 

  7. Jabeen M, Ishaq M, Song W, Xu L, Deng Q (2017) Synthesis of Ni/Co/Al-layered triple hydroxide@brominated graphene hybrid on nickel foam as electrode material for high-performance supercapacitors. RSC Adv 7:46553–46565. https://doi.org/10.1039/C7RA08744F

    Article  ADS  Google Scholar 

  8. Morrison RT, Boyd RN, Bhatacharjee KS (2010) Organic chemistry, 7th edn. Pearson Education, New Delhi

    Google Scholar 

  9. Żarska S, Kulawik D, Drabowicz J, Ciesielski W (2017) A review of procedures of purification and chemical modification of carbon nanotubes with bromine. Fuller Nanotub Car N 25:563–569. https://doi.org/10.1080/1536383X.2017.1330266

    Article  Google Scholar 

  10. Diyuk VE, Zaderko AN, Veselovska KI, Lisnyak VV (2015) Functionalization of surface of carbon materials with bromine vapors at mediate high temperature: a thermogravimetric study. J Thermal Anal Calorim 120:1665–1678. https://doi.org/10.1007/s10973-015-4495-2

    Article  Google Scholar 

  11. Bulusheva LG, Lobiak EV, Fedoseeva YuV, Mevellec J-Y, Makarova AA, Flahaut E, Okotrub AV (2020) Effect of ultrasound pretreatment on bromination of double-walled carbon nanotubes. Synth Met 259:116233. https://doi.org/10.1016/j.synthmet.2019.116233

    Article  Google Scholar 

  12. Mazov I, Krasnikov D, Stadnichenko A, Kuznetsov V, Romanenko A, Anikeeva O, Tkachev E (2012) Direct vapor-phase bromination of multiwall carbon nanotubes. J Nanotechnol 2012:954084. https://doi.org/10.1155/2012/954084

    Article  Google Scholar 

  13. Janas D, Boncel S, Koziol KKK (2014) Electrothermal halogenation of carbon nanotube films. Carbon 73:259–266. https://doi.org/10.1016/j.carbon.2014.02.062

    Article  Google Scholar 

  14. Duesberg G, Graupner R, Downes P, Minett A, Ley L, Roth S, Nicoloso N (2004) Hydrothermal functionalisation of single-walled carbon nanotubes. Synthetic Met 142:263–266. https://doi.org/10.1016/j.synthmet.2003.09.009

    Article  Google Scholar 

  15. Hines D, Rümmeli MH, Adebimpe D, Akins DL (2014) High-yield photolytic generation of brominated single-walled carbon nanotubes and their application for gas sensing. Chem Commun 50:11568–11571. https://doi.org/10.1039/C4CC03702B

    Article  Google Scholar 

  16. Oliveira L, Lu F, Andrews L, Takacs G, Mehan M, Debies T (2013) UV photo-chlorination and -bromination of single-walled carbon nanotubes. J Mater Res 29:239–246. https://doi.org/10.1557/jmr.2013.382

    Article  ADS  Google Scholar 

  17. Friedrich JF, Hidde G, Lippitz A, Unger WES (2014) Plasma bromination of graphene for covalent bonding of organic molecules. Plasma Chem Plasma Process 34:621–645. https://doi.org/10.1007/s11090-013-9509-x

    Article  Google Scholar 

  18. Abdelkader VK, Domingo-García M, Melguizo M, López-Garzón R, Javier López-Garzón F, Pérez-Mendoza M (2015) Covalent bromination of multi-walled carbon nanotubes by iodine bromide and cold plasma treatments. Carbon 93:276–285. https://doi.org/10.1016/j.carbon.2015.05.070

    Article  Google Scholar 

  19. Lippitz A, Friedrich JF, Unger WES (2013) Plasma bromination of HOPG surfaces: a NEXAFS and synchrotron XPS study. Surface Sci 611:L1–L7. https://doi.org/10.1016/j.susc.2013.01.020

    Article  ADS  Google Scholar 

  20. Zheng J, Liu H, Wu B et al (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662. https://doi.org/10.1038/srep00662

    Article  Google Scholar 

  21. Hasan M, Meiou W, Yulian L, Ullah S, Ta HQ, Zhao L, Mendes RG, Zahida P, Malik ZP, Ahmad NM, Liu Z, Rümmeli MH (2019) Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv 9:13527–13532. https://doi.org/10.1039/C9RA01152H

    Article  ADS  Google Scholar 

  22. Kong H, Yang S, Gao H, Timmer A, Hill JP, Arado OD, Mönig H, Huang X, Tang Q, Ji Q, Liu W, Fuchs H (2017) Substrate-mediated C-C and C–H coupling after dehalogenation. JACS 139:3669–3675. https://doi.org/10.1021/jacs.6b10936

    Article  Google Scholar 

  23. Sedelnikova OV, Ewels CP, Pinakov DV, Chekhova GN, Flahaut E, Okotrub AV, Bulusheva LG (2019) Bromine polycondensation in pristine and fluorinated graphitic carbons. Nanoscale 11:15298–15306. https://doi.org/10.1039/C9NR01922G

    Article  Google Scholar 

  24. Fanchini G, Unalan H, Chhowalla M (2007) Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization. Appl Phys Lett 90:092114. https://doi.org/10.1063/1.2709903

    Article  ADS  Google Scholar 

  25. Lai S, Jin Y, Sun X, Pan J, Du W, Shi L (2018) Aqueous-based bromination of graphene by electrophilic substitution reaction: a defect-free approach for graphene functionalization. Res Chem Intermediat 44:3523–3536. https://doi.org/10.1007/s11164-018-3322-3

    Article  Google Scholar 

  26. Au H, Rubio N, Shaffer MSP (2018) Brominated graphene as a versatile precursor for multifunctional grafting. Chem Sci 9:209–217. https://doi.org/10.1039/C7SC03455E

    Article  Google Scholar 

  27. Lockett MR, Smith LM (2009) Attaching molecules to chlorinated and brominated amorphous carbon substrates via Grignard reactions. Langmuir 25:3340–3343. https://doi.org/10.1021/la8039626

    Article  Google Scholar 

  28. Hanelt S, Friedrich J, Orts-Gil G, Meyer-Plath A (2012) Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon 50:1373–1385. https://doi.org/10.1016/j.carbon.2011.11.009

    Article  Google Scholar 

  29. Xiaorong Z, Lv Y, Cheng-an T, Hui Z, Lin X, Jianfang W (2017) A method for selective bromination of graphene and its use for subsequent functionalization with aromatic molecules. Mater Res Express 4:045601. https://doi.org/10.1088/2053-1591/aa6883

    Article  ADS  Google Scholar 

  30. Jin Y, Sun X, Pan J, Du W, Shi L (2018) Aqueous-based bromination of graphene by electrophilic substitution reaction: a defect-free approach for graphene functionalization. Res Chem Intermediat 44:3523–3536. https://doi.org/10.1007/s11164-018-3322-3

    Article  Google Scholar 

  31. Uklein AV, Diyuk VE, Grischenko LM, Kozhanov VO, Boldyrieva OYu, Lisnyak VV, Multian VV, Gayvoronsky VYa (2016) Characterization of oxidized carbon materials with photoinduced absorption response. Appl Phys B 122:287. https://doi.org/10.1007/s00340-016-6561-2

    Article  ADS  Google Scholar 

  32. Zaderko AN, Shvets RYa, Grygorchak II, Afonin S, Diyuk VE, Mariychuk RT, Boldyrieva OYu, Kaňuchová M, Lisnyak VV (2019) Fluoroalkylated nanoporous carbons: testing as a supercapacitor electrode. Appl Surf Sci 470:882–892. https://doi.org/10.1016/j.apsusc.2018.11.141

    Article  ADS  Google Scholar 

  33. Grishchenko LM, Diyuk VE, Mariychuk RT et al (2020) Surface reactivity of nanoporous carbons: preparation and physicochemical characterization of sulfonated activated carbon fibers. Appl Nanosci 10:2923–2939. https://doi.org/10.1007/s13204-019-01069-3

    Article  Google Scholar 

  34. Tsapyuk GG, Diyuk VE, Mariychuk R et al (2020) Effect of ultrasonic treatment on the thermal oxidation of detonation nanodiamonds. Appl Nanosci. https://doi.org/10.1007/s13204-020-01277-2

    Article  Google Scholar 

  35. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Rec Pat Chem Eng 1:27–40. https://doi.org/10.2174/2211334710801010027

    Article  Google Scholar 

  36. Multian VV, Kinzerskyi FE, Vakaliuk AV et al (2017) Surface response of brominated carbon media on laser and thermal excitation: optical and thermal analysis study. Nanoscale Res Lett 12:146. https://doi.org/10.1186/s11671-017-1873-7

    Article  ADS  Google Scholar 

  37. Ischenko EV, Matzui LY, Gayday SV, Vovchenko LL, Kartashova TV, Lisnyak VV (2010) Thermo-exfoliated graphite containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) composites: preparation, characterization and catalytic performance in CO conversion. Materials 3:572–584. https://doi.org/10.3390/ma3010572

    Article  ADS  Google Scholar 

  38. Wu H, Lu W, Chen Y, Zhang P, Cheng X (2020) Application of Boehm titration for the quantitative measurement of soot oxygen functional groups. Energy Fuels 34:7363–7372. https://doi.org/10.1021/acs.energyfuels.0c00904

    Article  Google Scholar 

  39. Schönherr J, Buchheim JR, Scholz P, Adelhelm P (2018) Boehm titration revisited (Part I): practical aspects for achieving a high precision in quantifying oxygen-containing surface groups on carbon materials. C 4(2):21. https://doi.org/10.3390/c4020021

    Article  Google Scholar 

  40. Ackermann J, Krueger A (2020) Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon 163:56–62. https://doi.org/10.1016/j.carbon.2020.02.088

    Article  Google Scholar 

  41. Jagiello J, Olivier JP (2013) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783. https://doi.org/10.1007/s10450-013-9517-4

    Article  Google Scholar 

  42. Jagiello J, Kenvin J, Celzard A, Fierro V (2019) Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon 144:206–215. https://doi.org/10.1016/j.carbon.2018.12.028

    Article  Google Scholar 

  43. Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80. https://doi.org/10.1016/j.carbon.2012.12.011

    Article  Google Scholar 

  44. Puziy AM, Poddubnaya OI, Gawdzik B et al (2016) Comparison of heterogeneous pore models QSDFT and 2D-NLDFT and computer programs ASiQwin and SAIEUS for calculation of pore size distribution. Adsorption 22:459–464. https://doi.org/10.1007/s10450-015-9704-6

    Article  Google Scholar 

  45. Diyuk VE, Mariychuk RT, Lisnyak VV (2016) Barothermal preparation and characterization of micro-mesoporous activated carbons: textural studies, thermal destruction and evolved gas analysis with TG-TPD-IR technique. J Thermal Anal Calorim 124:1119–1130. https://doi.org/10.1007/s10973-015-5208-6

    Article  Google Scholar 

  46. Khavryuchenko VD, Khavryuchenko OV, Shkilnyy AI, Stratiichuk DA, Lisnyak VV (2009) Characterization by SEM, TEM and quantum-chemical simulations of the spherical carbon with nitrogen (SCN) active carbon produced by thermal decomposition of poly(vinylpyridine-divinylbenzene) copolymer. Materials 2:1239–1251. https://doi.org/10.3390/ma2031239

    Article  ADS  Google Scholar 

  47. Khavryuchenko VD, Khavryuchenko OV, Shkilnyy AI, Lisnyak VV, Stratiichuk DA (2011) Structural effects of SKS active carbon modification with melamine, studied by SEM, TEM, EDX and quantum-chemical simulations. Int J Modern Phys B 25:1377–1383. https://doi.org/10.1142/S0217979211100059

    Article  ADS  Google Scholar 

  48. Khavryuchenko VD, Tarasenko YA, Khavryuchenko OV, Shkilnyy AI, Lisnyak VV, Stratiichuk DA (2010) Nanostructurization in the SKS active carbon, characterized by SEM, TEM, EDX and quantum-chemical simulations. Int J Modern Phys B 24:1449–1462. https://doi.org/10.1142/S0217979210055627

    Article  ADS  Google Scholar 

  49. Grishchenko LM, Diyuk VE, Konoplitska OP, Lisnyak VV, Maryichuk RT (2017) Modeling of copper ions adsorption onto oxidative-modified activated carbons. Adsorption Sci Technol 35:884–900. https://doi.org/10.1177/0263617417729236

    Article  Google Scholar 

  50. Schönherr J, Buchheim JR, Scholz P, Adelhelm P (2018) Boehm titration revisited (Part II): a comparison of boehm titration with other analytical techniques on the quantification of oxygen-containing surface groups for a variety of carbon materials. C 4(2):22. https://doi.org/10.3390/c4020022

    Article  Google Scholar 

  51. Bezugla TM, Grishchenko LM, Vakaliuk AV, Diyuk VE, Mischanchuk OV, Lisnyak VV (2018) Covalent bonding of sulfogroups to activated carbon fibers: the role of bromine plasma pretreatment. Molec Cryst Liquid Cryst 661:58–67. https://doi.org/10.1080/15421406.2018.1460240

    Article  Google Scholar 

  52. Veselovs’ka KI, Veselovs’kyi VL, Zaderko OM, Diyuk VE, Ishchenko OV (2015) Effect of the oxidation and thermal treatment on bromination of activated carbon. J Superhard Mater 37:39–43. https://doi.org/10.3103/S1063457615010062

    Article  Google Scholar 

  53. Khavryuchenko OV, Khavryuchenko VD, Lisnyak VV, Peslherbe GH (2011) A density-functional theory investigation of the electronic structure of the active carbon graphite-like and amorphous domains. Chem Phys Lett 513:261–266. https://doi.org/10.1016/j.cplett.2011.08.009

    Article  ADS  Google Scholar 

  54. Khavryuchenko VD, Tarasenko YA, Strelko VV, Khavryuchenko OV, Lisnyak VV (2008) Interaction of the dioxygen molecule with the C96H24 polyaromatic hydrocarbon cluster: a quantum chemical insight. Int J Modern Phys B 22:2115–2127. https://doi.org/10.1142/S0217979208039289

    Article  ADS  Google Scholar 

  55. Khavryuchenko VD, Khavryuchenko OV, Lisnyak VV (2010) High multiplicity states in disordered carbon systems: Ab initio and semiempirical study. Chem Phys 368:83–86. https://doi.org/10.1016/j.chemphys.2009.12.022

    Article  Google Scholar 

  56. Khavryuchenko VD, Khavryuchenko OV, Lisnyak VV (2010) Effect of spin catalysis in H2S oxidation: a quantum chemical insight. Catal Comm 11:340–345. https://doi.org/10.1016/j.catcom.2009.10.027

    Article  Google Scholar 

  57. Khavryuchenko VD, Khavryuchenko OV, Tarasenko YA, Lisnyak VV (2008) Computer simulation of N-doped polyaromatic hydrocarbons clusters. Chem Phys 352:231–234. https://doi.org/10.1016/j.chemphys.2008.06.019

    Article  Google Scholar 

  58. Khavryuchenko VD, Tarasenko YA, Strelko VV, Khavryuchenko OV, Lisnyak VV (2007) Quantum chemical study of polyaromatic hydrocarbons in high multiplicity states. Int J Modern Phys B 21:4507–4515. https://doi.org/10.1142/S0217979207037946

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Ministry of Education and Science of Ukraine ([0111U006260], [0114U003554], and [0116U002558]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lisnyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diyuk, V.E., Zaderko, A.N., Grishchenko, L.M., Vakaliuk, A.V., Mariychuk, R., Lisnyak, V.V. (2021). Surface Reactivity of Carbon Nanoporous Materials Studied with Chemical Bromination. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-74800-5_12

Download citation

Publish with us

Policies and ethics