Skip to main content

Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1332))

Abstract

Arginine is a key amino acid in pregnant females as it is the precursor for nitric oxide (NO) via nitric oxide synthase and for polyamines (putrescine, spermidine, and spermine) by either arginase II and ornithine decarboxylase to putrescine or via arginine decarboxylase to agmatine and agmatine to putrescine via agmatinase. Polyamines are critical for placental growth and vascularization. Polyamines stabilize DNA and mRNA for gene transcription and mRNA translation, stimulate proliferation of trophectoderm, and formation of multinucleated trophectoderm cells that give rise to giant cells in the placentae of species such as mice. Polyamines activate MTOR cell signaling to stimulate protein synthesis and they are important for motility through modification of beta-catenin phosphorylation, integrin signaling via focal adhesion kinases, cytoskeletal organization, and invasiveness or superficial implantation of blastocysts. Physiological levels of arginine, agmatine, and polyamines are critical to the secretion of interferon tau for pregnancy recognition in ruminants. Arginine, polyamines, and agmatine are very abundant in fetal fluids, fetal blood, and tissues of the conceptus during gestation. The polyamines are thus available to influence a multitude of events including activation of development of blastocysts, implantation, placentation, fetal growth, and development required for the successful establishment and maintenance of pregnancy in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Arginine decarboxylase

AGMAT:

Agmatinase

AMD1:

S-Adenosylmethionine decarboxylase

Azin1:

Antizyme inhibitor 1

AZI:

Antienzymes

DFMO:

Difluoromethylornithine

eIF5A:

Eukaryotic translation initiation factor 5A-1

IFNT:

Interferon tau

LE:

Uterine luminal epithelia

MAO:

Morpholino antisense oligonucleotide

MTOR:

Mechanistic target of rapamycin

MAPK:

Mitogen-activated protein kinases

NFKB:

Nuclear factor kappa B

NO:

Nitric oxide

NOS:

Nitric oxide synthases

OAZ1:

Ornithine decarboxylase antizyme 1

ODC:

Ornithine decarboxylase-1

oTr1:

Ovine trophectoderm

Paox:

Peroxisomal N1-acetyl-spermine/spermidine oxidase

SAM:

S-Adenosylmethionine

SAT1:

Spermidine/spermine N1-acetyltransferase 1

sGE:

Superficial glandular epithelia

Smox:

Spermine oxidase

SMS:

Spermine synthase

SRM:

Spermidine synthase

References

  • Agostinelli E (2020) Biochemical and pathophysiological properties of polyamines. Amino Acids 52:111–117

    Google Scholar 

  • Bae DH, Lane DJR, Janssona PJ, Richardson DR (2018) The old and new biochemistry of polyamines. Biochem Biophy Acta 1862:2053–2068

    Article  CAS  Google Scholar 

  • Bazer FW, Spencer TE, Ott TL (1997) Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol 37:412–420

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Billington DC (1991) Angiogenesis and its inhibition: potential new therapies in oncology and non-neoplastic diseases. Drug Des Discov 8:3–35

    CAS  PubMed  Google Scholar 

  • Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A (2013) eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 44:103–109

    Article  CAS  PubMed  Google Scholar 

  • Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003) X-Linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Hum Genet 11:937–944

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Park HY (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci 19:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffino P (2000) Polyamines in spermiogenesis: not now, darling. Proc Natl Acad Sci USA 97:4421–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XS, Kim NH (2005) Polyamines inhibit apoptosis in porcine parthenotes developing in vitro. Mol Reprod Dev 70:471–477

    Article  CAS  PubMed  Google Scholar 

  • Dever TE, Gutierrez E, Shin BS (2014) The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol 49:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmetwally MA, Lenis Y, Tang W, Wu G, Bazer FW (2018) Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm. Biol Reprod 99:611–628

    Article  PubMed  Google Scholar 

  • Fenelon JC, Murphy BD (2017) Inhibition of polyamine synthesis causes entry of the mouse blastocyst into embryonic diapause. Biol Reprod 97:119–132

    Article  PubMed  Google Scholar 

  • Fenelon JC, Murphy BD (2019) New functions for old factors: the role of polyamines during the establishment of pregnancy. Reprod Fertil Dev 31:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Fenelon JC, Banerjee A, Murphy BD (2014) Embryonic diapause: development on hold. Int J Dev Biol 58:163–174

    Article  PubMed  Google Scholar 

  • Fenelon JC, Lefèvre PL, Banerjee A, Murphy BD (2017) Regulation of diapause in carnivores. Reprod Domest Anim 52(Suppl 2):12–17

    Article  CAS  PubMed  Google Scholar 

  • Fozard JR, Part ML, Prakash NJ, Grove J (1980b) Inhibition of murine embryonic development by alpha-difluromethylornithine, an irreversible inhibitor of ornithine decarboxylase. Eur J Pharmacol 65:379–391

    Article  CAS  PubMed  Google Scholar 

  • Fozard JR, Part ML, Prakash NJ, Grove J, Schechter PJ, Sjoerdsman A, Koch-Weser JL (1980a) Ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science 208:505–508

    Article  CAS  PubMed  Google Scholar 

  • Galliani G, Colombo G, Luzzani F (1983) Contragestational effects of DL-a-difluoro-methylornithine, an irreversible inhibitor of ornithine decarboxylase, in the hamster. Contraception 28:159–170

    Article  CAS  PubMed  Google Scholar 

  • Gao H (2020) Amino acids in reproductive nutrition and health. Adv Exp Med Biol 1265:111–131

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW (2009b) Select nutrients in the ovine uterine lumen: III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW (2009) Select nutrients in the ovine uterine lumen: V. Nitric oxide synthase, GTP cyclohydrolase and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod 81:67–76

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW (2009a) Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal fluid of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  CAS  PubMed  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61  

    Article  PubMed  Google Scholar 

  • Gwatkin RB (1969) Nutritional requirments for post-blastocyst development in the mouse: amino acids and protein in the uterus during implantation. Int J Fertil 14:101–105

    Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Google Scholar 

  • Igarashia K, Kashiwagic K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  CAS  Google Scholar 

  • Ikeguchi Y, Wang X, McCloskey DE, Coleman CS, Nelson P, Hu G, Shanz LM, Pegg AE (2004) Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem J 381:701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasnis MA, Klein S, Monte M, Davel L, de Lustig ES, Algranati ID (1994) Polyamines prevent DFMO-mediated inhibition of angiogenesis. Cancer Lett 79:39–43

    Article  CAS  PubMed  Google Scholar 

  • Johnson LR, McCormack SA (1999) Healing of gastrointestinal mucosa: involvement of polyamines. News Physiol Sci 14:12–17

    CAS  PubMed  Google Scholar 

  • Johnson GA, Bazer FW, Burghardt RC, Wu G, Seo H, Kramer AC, McLendon BA (2018) Cellular events during ovine implantation and impact for gestation. Anim Reprod 15(Suppl 1):843–855

    Article  Google Scholar 

  • Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW (2011) Select nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol Reprod 84:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, Bazer FW, Wu G (2012) L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Kusunoki S, Yasumasu I (1978) Inhibitory effect of alpha-hydrazinoornithine on egg cleavage in sea urchin eggs. Dev Biol 67:336–345

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Wu G, Bazer FW, Spencer TE (2003) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE (2004a) Developmental changes in nitric oxide synthesis in the ovine placenta. Biol Reprod 70:679–686

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MW, Hess BW, Wu G (2004b) Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod 71:901–908

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Chen Y, Huang YP, Hsu YC, Chian LH, Chen TY, Wang GJ (2013) Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression. J Cell Biochem 114:2718–2728

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32:694–712

    Article  PubMed  CAS  Google Scholar 

  • Lenis YY, Wang X, Tang W, Wu G, Bazer FW (2016) Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 48:2389–2399

    Article  CAS  PubMed  Google Scholar 

  • Lenis YY, Elmetwally MA, Maldonado-Estrada JG, Bazer FW (2017) Physiological importance of polyamines. Zygote 25:244–255

    Article  CAS  PubMed  Google Scholar 

  • Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW (2018) Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotech 9:306–318

    Article  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Lopez-Garcia C, Lopez-Contreras C, Cremades AJ, Castells MT, Marın F, Shreiber F, Penafiel R (2008) Molecular and morphological changes in placenta and embryo-development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 149:5012–5023

    Article  CAS  PubMed  Google Scholar 

  • Lowkvist B, Heby O, Emanuelsson H (1980) Essential role of the polyamines in early chick embryo development. J Embryol Exp Morphol 60:83–92

    CAS  PubMed  Google Scholar 

  • Luzzani F, Colombo G, Galliani G (1982) Evidence for a role of progesterone in the control of uterine ornithine decarboxylase in the pregnant hamster. Life Sci 31:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S (1986) The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci USA 83:4899–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamont PS, Duchesne MC, Grove J, Bey P (1978) Antiproliferative properties of DL-a-difluromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem Biophys Res Commun 81:58–66

    Article  CAS  PubMed  Google Scholar 

  • Martin PM, Sutherland AE, Van Winkle LJ (2003) Amino acid transport regulates blastocyst implantation. Biol Reprod 69:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Mathews MB, Hershey JW (2015) The translation factor eIF5A and human cancer. Biochim Biophys Acta 1849:836–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra PK, Kitchlu S, Farheen S (1998) Effect of inhibitors of enzymes involved in polyamine biosynthesis pathway on pregnancy in mouse and hamster. Reprod Fertil Dev 57:55–60

    CAS  Google Scholar 

  • Minois N (2014) Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines - A mini-review. Gerontology 60:319–326

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging 3:716–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Moinard C, Cynober L, de Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24:184–197

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 3:9–22

    Article  Google Scholar 

  • Nishimura K, Nakatsu F, Kashiwagi K, Ohno H, Saito T, Igarashi K (2002) Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Genes Cells 7:41–47

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Lee SB, Park JH, Park MH (2012) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 42:703–710

    Article  CAS  PubMed  Google Scholar 

  • Pällmann N, Braig M, Sievert H, Preukschas M, Hermans-Borgmeyer I, Schweizer M, Nagel CH, Neumann M, Wild P, Haralambieva E, Hagel C, Bokemeyer C, Hauber J, Balabanov S (2015) Biological relevance and therapeutic potential of the hypusine modification system. J Biol Chem 290:18343–18360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegg AE (2013) Toxicity of polyamines and their metabolic products. Chem ResToxicol 26:1782–1800

    CAS  Google Scholar 

  • Pegg AE (2016) Functions of polyamines in mammals. J Biol Chem 291:14904–14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121

    Article  CAS  PubMed  Google Scholar 

  • Pendeville H, Carpino N, Marine J-C, Takahasi Y, Muller M, Martial JA, Cleveland JL (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21:6549–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell DH (1971) Putrescine and spermidine biosynthesis in the development of normal and anucleolate mutants of Xenopus laevis. Proc Natl Acad Sci USA 68:523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterfield MC, Song G, Kochan L, Riggs P, Simmons RM, Elsik C, Adelson D, Bazer FW, Zhou H, Spencer TE (2009) Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol Genomics 39:85–99

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Gao H, Li X, Wu G, Johnson GA, Spencer TE, Bazer FW (2010) Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol Reprod 82:224–231

    Article  CAS  PubMed  Google Scholar 

  • Saunderson R, Heald PJ (1974) Ornithine decarboxylase activity in the uterus of the rat during early pregnancy. J Reprod Fertil 39:141–143

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Becker T, Heuer A, Braunger K, Shanmuganathan V, Pech M, Berninghausen O, Wilson DN, Beckmann R (2016) Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res 44:1944–1951

    Article  PubMed  Google Scholar 

  • Sievert H, Pällmann N, Miller KK, Hermans-Borgmeyer I, Venz S, Sendoel A, Preukschas M, Schweizer M, Boettcher S, Janiesch PC, Streichert T, Walther R, Hengartner MO, Manz MG, Brümmendorf TH, Bokemeyer C, Braig M, Hauber J, Duncan KE, Balabanov S (2014) A novel mouse model for inhibition of DOHH mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis Model Mech 7:963–976

    PubMed  PubMed Central  Google Scholar 

  • Silva TM, Cirenajwis H, Wallace HM, Oredsson S, Persson L (2015) A role for antizyme inhibitor in cell proliferation. Amino Acids 47:1341–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer TE, Bazer FW (2004) Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol 2:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW (1995) Ovine Interferon-Ï„ regulates expression of endometrial receptors for estrogen and oxytocin, but not progesterone. Biol Reprod 53:732–745

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Mai M, Nishioka K (2000) Difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int J Cancer 85:243–247

    Article  CAS  PubMed  Google Scholar 

  • Takigawa M, Nishida Y, Suzuki F, Kishi JI, Yamashita K, Hayakawa T (1990b) Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 171:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Takigawa M, Enomoto M, Nishida Y, Pan HO, Kinoshita A, Suzuki F (1990a) Tumor angiogenesis and polyamines: alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro. Cancer Res 50:4131–4138

    CAS  PubMed  Google Scholar 

  • Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G (2011) Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ikeguchi Y, McCloskey SW, Nelson P, Pegg AE (2004) Spermine synthesis is required for normal viability, growth and fertility in the mouse. J Biol Chem 279:51370–51375

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:1–15

    Google Scholar 

  • Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2015) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Google Scholar 

  • Wu G, Pond WG, Flynn SP, Ott TL, Bazer FW (1998) Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr 128:2395–2402

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195-204

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeon JT, Ryu BJ, Choi SW, Heo JC, Kim KJ, Son YJ, Kim SH (2014) Natural polyamines inhibit the migration of preosteoclasts by attenuating Ca2-PYK2-Src-NFATc1 signaling pathways. Amino Acids 46:2605–2614

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kashiwagi G, Kawai A, Ishihama A, Igarashi K (2001) Polyamine enhancement of the synthesis of adenylate cyclase at the translational level and the consequential stimulation of the synthesis of the RNA polymerase sigma 28 subunit. J Biol Chem 276:16289–16295

    Article  CAS  PubMed  Google Scholar 

  • Young KH, Bazer FW, Simpkins JW, Roberts RM (1987) Effects of early pregnancy and acute 17 beta-estradiol administration on porcine uterine secretion, cyclic nucleotides, and catecholamines. Endocrinology 120:254–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:87–107

    Google Scholar 

  • Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH, Shan CH, Yang ZM (2008) Polyamines are essential in embryo implantation: expression and function of polyamine-related genes inmouse uterus during peri-implantation period. Endocrinology 149:2325–2332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratories was supported by Agriculture and Food Research Initiative Competitive Grants (Nos. 2016-67015-24958 and 2018-67015-28093) from the USDA National Institute of Food and Agriculture.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halloran, K.M., Stenhouse, C., Wu, G., Bazer, F.W. (2021). Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-74180-8_6

Download citation

Publish with us

Policies and ethics