Skip to main content

Phytosociological Studies, Economic Value, and Sustainable Use of Alnus nitida: A Monophyletic Species of the Western Himalayas and Hindu Kush Region of the Sino-Japanese Belt of Pakistan

  • Chapter
  • First Online:
Biodiversity, Conservation and Sustainability in Asia

Abstract

Alnus nitida commonly known as Himalayan Alder is an endemic tree of the Himalayan, andHindukush mountains of the Sino-Japanese floristic region. It ranges from district Bajaur ofPakistan bordering Afghanistan eastwards to Kashmir, India and Nepal. It is a communityfriendly species, allowing a great diversity of plants to thrive in its vicinity. We documented thephytosociological association of 146 species representing 106 genera and 47 families with A.nitida. Our ethno-ecological survey demonstrated that A. nitida was preferred by the localcommunities for a plethora of traditional uses like fuel, medicine, agro-agricultural, fodder andconstruction purposes. We also found that A. nitida has greatly declined throughout its range as aresult of drought, habitat destruction, recreation, overexploitation, deforestation and otheranthropogenic activities. The current study provides a baseline for more studies on moleculargenetics, phytochemistry, sustainable use and conservation priorities of A. nitida and other suchspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe EC (1938) Studies in the phylogeny of the Betulaceae. II. Extremes in the range of variation of floral and inflorescence. Morphol Bot Gaz 99:431–469

    Google Scholar 

  • Abdussamad AM, Kalla DJU, Maigandi SA et al (2012) Bringing camels into focus: a photo-essay on dromedaries in the Nigeria-Niger corridor. Verlag der Österreichischen Akademie der Wissenschaften 451:225–230

    Google Scholar 

  • Ali SI, Qaiser M (1986) A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. Proc. Roy. Soc. Edinb, Sect B: Biol Sci 89:89–101

    Google Scholar 

  • Ali SI, Nasir E, Qaiser M (1972–2009) Flora of Pakistan. Anonymous Pakistan Agricultural Research Council, The University of California, USA

    Google Scholar 

  • Ali S, Ullah S, Ali M et al (2016) Diversity and ecological characteristics of plants at Sardara Banda, village Ikram pur (Baizo kharki) district Mardan, Khyber Pakhtunkhwa (Pakistan). Pure Appl Biol 5:1

    Google Scholar 

  • Altay V (2012) Mustafa Kemal Ãœniversitesi Tayfur Ata Sökmen Kampüsü (Hatay)’nün süs bitkileri. Karadeniz Fen Bilimleri Dergisi 2(6):11–26

    Google Scholar 

  • Altay V (2019) Ecology of Pinus sylvestris L. forests – a case study from Istanbul (Turkey). Pak J Bot 51(5):1711–1718

    Google Scholar 

  • Altay V, Çelik O (2011) Antakya semt pazarlarındaki bazı doÄŸal bitkilerin etnobotanik yönden araÅŸtırılması. Biyoloji Bilimleri AraÅŸtırma Dergisi 4(2):137–139

    Google Scholar 

  • Altay V, Karahan F (2017b) Anadolu geleneksel tıbbında güneÅŸ çarpması ve güneÅŸ yanığı tedavisinde kullanılan tıbbi bitkiler. Erzincan Univ J. Sci. Technol 10(1):124–137

    Google Scholar 

  • Altay V, Ozturk M (2012) Land degradation and halophytic plant diversity of Milleyha Wetland Ecosystem (SamandaÄŸ-Hatay), Turkey. Pak J Bot 44:37–50

    Google Scholar 

  • Altay V, Ozturk M (2020) The genera Salsola and Suaeda (Amaranthaceae) and their value as fodder. In: Grigore M-N (ed) Handbook of halophytes. Springer Nature, Cham. https://doi.org/10.1007/978-3-030-17854-3_97-1

    Chapter  Google Scholar 

  • Altay V, Serın M, Yarcı C, Severoglu Z (2012b) Phytoecological and phytosociological investigations of the vegetation of Gölcuk (Kocaeli/Turkey). Ekoloji 21(84):74–89

    Google Scholar 

  • Altay V, Keskin M, Karahan F (2015b) An assessment of the plant biodiversity of Mustafa Kemal university Tayfur Sokmen campus (Hatay-Turkey) for the view of human health. Int. J. Sci. Technol. Res 1(2):83–103

    Google Scholar 

  • Altay V, Karahan F, Sarcan YB, Ilçım A (2015c) An ethnobotanical research on wild plants sold in Kırıkhan district (Hatay/Turkey) herbalists and local markets. Biol Divers Conserv 8(2):81–91

    Google Scholar 

  • Altay V, Silc U, Yarcı C et al (2020) Urban vegetation of the Anatolian side of Istanbul. Phytocoenologia 50(2):101–121

    Google Scholar 

  • Andersen JB, Nielsen J, Bauch G, Herdin M (2006) The large office environment-measurement and modeling of the wideband radio channel. In: Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on, 2006. IEEE, p 1–5

    Google Scholar 

  • Anthelme F, Michalet R, Barbaro L, Brun J-J (2003) Environmental and spatial influences of shrub cover (Alnus viridis DC.) on vegetation diversity at the upper treeline in the inner western Alps. Arct Antarct Alp Res 35:48–55

    Google Scholar 

  • Balick MJ, Cox PA (1996) Plants, people, and culture: the science of ethnobotany. Garland Science, Taylor & Francis Group

    Google Scholar 

  • Casas A, del Carmen VM, Viveros JL, Caballero J (1996) Plant management among the Nahua and the Mixtec in the Balsas River Basin, Mexico: an ethnobotanical approach to the study of plant domestication. Hum Ecol 24:455–478

    Google Scholar 

  • Chang CC, Keisler HJ (1990) Model theory, vol 73. Elsevier

    Google Scholar 

  • Chen S, Cowan CF, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2:302–309

    CAS  PubMed  Google Scholar 

  • Cronquist A, Takhtadzhî AL (1981) An integrated system of classification of flowering plants. Columbia University Press

    Google Scholar 

  • Dangwal L, Singh A, Sharma A, Singh T (2011) Diversity of weed species in wheat fields of block Nowshera District Rajouri (J & K). Indian J Weed Sci 43(1–2):94–96

    Google Scholar 

  • David F (2010) Expansion of green alder (Alnus alnobetula [Ehrh] K. Koch) in the northern French Alps: a palaeoecological point of view. C R Biol 333:424–428

    PubMed  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol 42:55–76

    CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Furlow JJ (1990) The genera of Betulaceae in the southeastern United States. J Arnold Arboretum 71:1–67

    Google Scholar 

  • Gilliam FS, Saunders NE (2003) Making more sense of the order: a review of Canoco for Windows 4.5, PC-ORD version 4 and SYN-TAX 2000. J Veg Sci 14:297–304

    Google Scholar 

  • Goebel PC, Pregitzer KS, Palik BJ (2006) Landscape hierarchies influence riparian ground-flora communities in Wisconsin, USA. For Ecol Manag 230:43–54

    Google Scholar 

  • Good R (1974) The geography of the flowering plants. Longmans Green & Co. Ltd., London

    Google Scholar 

  • Gravatt DA, Kirby CJ (1998) Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol 18:411–417

    PubMed  Google Scholar 

  • Greig-Smith P (2010) Quantitative plant ecology. Blackwell Scientific, Oxford

    Google Scholar 

  • Gupta H (1991) Changing pattern of vegetation in the intermontane basin of Kashmir since 4 Ma: a palynological approach. Palaeobotanist 40:354–373

    Google Scholar 

  • Hardin JW, Bell JM (1986) Atlas of foliar surface features in woody plants, IX. Betulaceae of eastern United States. Brittonia 38:133–144

    Google Scholar 

  • Hedge IC, Wendelbo P (1970) Some remarks on endemism in Afghanistan. Israel J Bot 19:401–417

    Google Scholar 

  • Hjelmqvist H (1948) Studies on the floral morphology and phylogeny of the Amentiferae. Botaniska Notiser Supp 1:1–171

    Google Scholar 

  • Hooker JD (1904) On the species of impatiens in the Wallichian herbarium of the Linnean society. J Linn Soc Lond Bot 37:22–32

    Google Scholar 

  • Imanberdieva N, SeveroÄŸlu Z, Kurmanbekova G et al (2018a) Plant diversity of Ala-Archa Nature Park in Kyrgyzstan with emphasis on its economic potential. In: Egamberdieva D, Öztürk M (eds) Vegetation of Central Asia and environs. Chapter 16, vol 2018. Springer Nature, Cham, pp 365–381

    Google Scholar 

  • Imanberdieva N, Imankul B, SeveroÄŸlu Z et al (2018b) Potential impacts of climate change on plant diversity of Sary-Chelek Biosphere Reserve in Kyrgyzstan. In: Egamberdieva D, Ozturk M (eds) Vegetation of Central Asia and environs. Chapter 15, vol 2018. Springer Nature, Cham, pp 349–364

    Google Scholar 

  • Iqbal M, Khan S, Khan MA et al (2015) Exploration and inventorying of weeds in wheat crop of the district Malakand, Pakistan. Pakistan J Weed Sci Res 21(3):435–452

    Google Scholar 

  • Karahan F, Altay V, Keskin M (2015) An ethnobotanical study on woody plants benefits from handicrafts in Antakya District (Hatay-Turkey). Int J Sci Technol Res 1(1):1–18

    Google Scholar 

  • Kärki T, Maltamo M, Eerikäinen K (2000) Diameter distribution, stem volume and stem quality models for grey alder (Alnus incana) in eastern Finland. New For 20:65–86

    Google Scholar 

  • Kawase M (1981) Anatomical and morphological adaptation of plants to waterlogging. Hortic Sci 16:8–12

    Google Scholar 

  • Kent M (2006) Numerical classification and ordination methods in biogeography. Prog Phys Geogr 30:399–408

    Google Scholar 

  • Khan SM (2012) Plant communities and vegetation ecosystem services in the Naran Valley, Western Himalaya. PhD Thesis. University of Leicester

    Google Scholar 

  • Khan SM, Page S, Ahmad H et al (2013) Phyto-climatic gradient of vegetation and habitat specificity in the high elevation Western Himalayas. Pak J Bot 45:223–230

    Google Scholar 

  • Khan M, Hussain F, Musharaf S (2014) Floristic composition and ecological characteristics of Shahbaz Garhi, District Mardan, Pakistan. Global J Sci Front Res 1:7–17

    Google Scholar 

  • Kikuzaki H, Usuguchi J, Nakatani N (1991) Constituents of Zingiberaceae. I. Diarylheptanoids from the rhizomes of ginger (Zingiber officinale Roscoe). Chem Pharm Bull 39:120–122

    CAS  Google Scholar 

  • Kitamura S (1966) Additions and corrections to Flora of Afghanistan. Committee of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, Kyoto University

    Google Scholar 

  • Kozlowski T (1999) Soil compaction and growth of woody plants Scandinavian. J For Res 14:596–619

    Google Scholar 

  • Krzaklewski W, Pietrzykowski M, WoÅ› B (2012) Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecol Eng 49:35–40

    Google Scholar 

  • Lachman G (2018) Dark star rising: Magick and power in the age of trump. Penguin

    Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press

    Google Scholar 

  • Longhi S, Selle G, Ragagnin L, Damiani J (1992) Floristic composition and phytosocialogical structure of a Podocarpus lumbertii ‘copes’ in Rio Grande do Sul. Cien-Flor 2:9–26

    Google Scholar 

  • Malik Z, Hussain F, Malik N (2007) Life form and leaf size spectra of plant communities Harbouring Ganga Chotti and Bedori Hills during 1999-2000. Int J Agric Biol 9:833–838

    Google Scholar 

  • Masoodi KZ, Amin I, Mansoor S et al (2020) Botanicals from the Himalayas with anticancer potential – an emphasis on Kashmir Himalayas. In: Munir Ozturk M, Egamberdieva D, PeÅ¡ić M (eds) Biodiversity and biomedicine – our future. Chapter 11. Academic, pp 189–234

    Google Scholar 

  • May PH, Anderson AB, Balick MJ, Frazão JMF (1985) Subsistence benefits from the babassu palm (Orbignya martiana). Econ Bot 39:113

    Google Scholar 

  • McCune B, Mefford M (1999) PC-ORD: multivariate analysis of ecological data; Version 4 for Windows;[User’s Guide]. MjM software design

    Google Scholar 

  • McVean D (1956) Ecology of Alnus glutinosa (L.) Gaertn: V. Notes on some British alder populations. J Ecol:321–330

    Google Scholar 

  • Miyamoto A, Nakayama K, Imaki H et al (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416:865

    CAS  PubMed  Google Scholar 

  • Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. In: Belhassen E (ed) Drought tolerance in higher plants: Genetical, physiological and molecular biological analysis. Springer, Dordrecht, pp 7–14

    Google Scholar 

  • Mota NM, Rezende VL, da Silva MG et al (2016) Forces driving the regeneration component of a rupestrian grassland complex along an altitudinal gradient. Rev Bras Bot 39:845–860

    Google Scholar 

  • Negi CS (2010) Traditional culture and biodiversity conservation: examples from Uttarakhand, central Himalaya. Mt Res Dev 30:259–265

    Google Scholar 

  • O’Hara DD, Porte D, Williams RH (1966) The effect of diet and thyroxin on plasma lipids in myxedema. Metab Clin Exp 15:123–134

    PubMed  Google Scholar 

  • Ozturk M, Efe R, Çelık A et al (2012a) Comparative study on biogegraphy of protected and degraded habitats in Dilek Peninsula, Turkey. J Balkan Ecol 15(4):383–392

    Google Scholar 

  • Ozturk M, Altay V, Gucel S, Aksoy A (2012b) Aegean Grasslands as endangered ecosystems in Turkey. Pak J Bot 44:7–18

    Google Scholar 

  • Ozturk M, Altay V, Gucel S, Guvensen A (2014) Halophytes in the East Mediterranean-their medicinal and other economical values. Sabkha ecosystems: volume IV: cash crop Halophyte and biodiversity conservation tasks for vegetation science Vol. 47, Springer Netherlands. Springer Science+Business Media Dordrecht, p 247–272

    Google Scholar 

  • Ozturk M, Altay V, AltundaÄŸ E, Gucel S (2016) Halophytic plant diversity of unique habitats in Turkey: salt mine caves of Çankırı and IÄŸdır. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Chapter 18. Elsevier. https://doi.org/10.1016/B978-0-12-801854-5.00018-2

    Chapter  Google Scholar 

  • Ozturk M, Altay V, Gonenç TM (2017c) Herbal from high mountains in the East Mediterranean. In: Bhojraj S et al (eds) Drug discovery from herbs-approaches and applications, Chapter 24. NAM S & T Centre, DAYA Publishing House, New Delhi-India, pp 327–367

    Google Scholar 

  • Ozturk M, Altay V, Gucel S, AltundaÄŸ E (2017d) Plant diversity of the drylands in Southeast Anatolia-Turkey: role in human health and food security. In: Ansari AA, Gill SS (eds) Plant biodiversity: monitoring, assessment and conservation. Chapter 5, CABI, Wallingford, pp 83–124

    Google Scholar 

  • Ozturk M, Altay V, Latiff A et al (2018a) A comparative analysis of the medicinal pteridophytes in Turkey, Pakistan, and Malaysia. In: Ozturk M, Hakeem KR (eds) Plant and human health, Vol. 1, Chapter 9. Springer International Publishing AG, part of Springer Nature, Cham, pp 349–390

    Google Scholar 

  • Ozturk M, Altay V, Latiff A et al (2018b) A comparative analysis of the medicinal plants used for diabetes mellitus in the traditional medicine in Turkey, Pakistan, and Malaysia. In: Ozturk M, Hakeem KR (eds) Plant and human health, Vol. 1, Chapter 11. Springer International Publishing AG, part of Springer Nature, Cham, pp 409–461

    Google Scholar 

  • Ozturk M, Altay V, Latiff A et al (2018c) Potential medicinal plants used in the hypertension in Turkey, Pakistan, and Malaysia. In: Ozturk M, Hakeem KR (eds) Plant and human health, Vol. 1, Chapter 16. Springer International Publishing AG, part of Springer Nature, Cham, pp 595–618

    Google Scholar 

  • Ozturk M, Gökler I, Altay V (2018d) Medicinal bryophytes distributed in Turkey. In: Ozturk M, Hakeem KR (eds) Plant and human health. Vol. 1, Chapter 8. Springer International Publishing AG, part of Springer Nature, Cham, pp 323–348

    Google Scholar 

  • Ozturk M, AltundaÄŸ E, Ibadullayeva SJ, Altay V, Aslanıpour B (2018e) A comparative analysis of medicinal and aromatic plants used in the traditional medicine of IÄŸdır (Turkey), Nakhchivan (Azerbaijan), and Tabriz (Iran). Pak J Bot 50(1):337–343

    Google Scholar 

  • Ozturk M, Altay V, AltundaÄŸ E, Ibadullayeva SJ, Aslanipour B, Gönenç TM (2018f) Herbals in IÄŸdır (Turkey), Nakhchivan (Azerbaijan), and Tabriz (Iran). In: Ozturk M, Hakeem KR (eds) Plant and human health, Chapter 6, vol 1. Springer, Cham, pp 197–266

    Google Scholar 

  • Ozturk M, Altay V, Guvensen A (2019) Sustainable use of halophytic taxa as food and fodder – an important genetic resource in Southwest Asia. In: Hasanuzzaman M, Nahar K, Öztürk M (eds) Ecophysiology, abiotic stress responses and utilization of halophytes, Chapter 11. Springer, Singapore, pp 235–257

    Google Scholar 

  • Ozturk M, Altay V, Kucuk M et al (2020a) Preservation and ecology of a living relict shrub in South Caucasus as a eco-genetic heritage from tertiary: Epigaea gaultherioides (Boiss. & Bal.) Takht. J Environ Biol 41:279–284

    CAS  Google Scholar 

  • Ozturk M, Altay V, Guvensen A (2020b) Portulaca oleracea: a vegetable from saline habitats. In: Grigore M-N (ed) Handbook of halophytes. Springer Nature, Cham, pp 1–14

    Google Scholar 

  • Ozyıgıt S, Altay V, Ozyığıt II, Yarcı C (2015) Vegetation ecology of the Princes’ islands, Istanbul-Turkey. J Environ Biol 36:113–120

    PubMed  Google Scholar 

  • Pagano MC, Lugo M, Araújo F et al (2012) Native species for restoration and conservation of biodiversity in South America native species: identification, conservation and restoration. Nova Science Publishers, Hauppauge, pp 1–55

    Google Scholar 

  • Perveen A, Qaiser M (1999) Pollen flora of Pakistan-XXXI. Betulaceae Pakistan J Bot 31:243–246

    Google Scholar 

  • Pirini CB, Tsiripidis I, Bergmeier E (2014) Steppe-like grass land vegetation in the hills around the lakes of Vegoritida and Petron, North-Central Greece. Hacquetia 13:121–169

    Google Scholar 

  • Pleskanovskaya SA, Mamedova MA, Ashıralıyeva MA et al (2019) Glycyrrhiza glabra (Liquorice) in Turkmenistan – medicinal and biological aspects. In: Ozturk M, Hakeem KR (eds) Plant and human health, − pharmacology and therapeutic uses, Vol. 3, Chapter 2. Springer Nature, Cham, pp 23–35

    Google Scholar 

  • Rajpar MN, Ozturk M, Altay V et al (2020) Species composition of dry-temperate forest as an important habitat for wildlife fauna species. J Environ Biol 41:328–336

    Google Scholar 

  • Rakotoarivelo N, Razanatsima A, Rakotoarivony F et al (2014) Ethnobotanical and economic value of Ravenala madagascariensis Sonn. In eastern Madagascar. J Ethnobiol Ethnomed 10:57

    PubMed  PubMed Central  Google Scholar 

  • Saima S, Dasti AA, Abbas Q, Hussain F (2010) Floristic diversity during monsoon in Ayubia National Park, district Abbottabad, Pakistan. Pakistan J Plant Sci 16(1):43–50

    Google Scholar 

  • SeveroÄŸlu Z, Altay V, Ozyıgıt II et al (2011) Some ecological characteristic and the flora of Gölcük District and its environs (Kocaeli-Turkey). Sci Res Essays 6(4):847–875

    Google Scholar 

  • Sezer Y, Altay V, Ozyıgıt II, Yarcı C (2015) Woody vegetation of Åžile and its environs (Istanbul/Turkey) and destruction of the area. J Environ Biol 36:163–170

    PubMed  Google Scholar 

  • Shaheen H, Ahmad N, Alam N et al (2011) Phytodiversity and endemic richness in high altitude Rama valley, Western Himalayas, northern Pakistan. J Med Plant Res 5:1489–1149

    Google Scholar 

  • Shaheen H, Shinwari ZK, Qureshi RA, Ullah Z (2012) Indigenous plant resources and their utilization practices in village populations of Kashmir Himalayas. Pak J Bot 44:739–745

    Google Scholar 

  • Sharp RE (1996) Regulation of plant growth responses to low soil water potentials. HortScience 31:36–39

    Google Scholar 

  • Singh A, Gupta N (2009) Status of Cedrus deodara (Roxb.) Loud. Stands under. Indian J For 32:45–54

    Google Scholar 

  • Stibolt V (1981) The distribution of Alnus maritima Muhl. ex Nutt.(Betulaceae). Castanea:195–200

    Google Scholar 

  • Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359

    Google Scholar 

  • Tarrant RF, Trappe JM (1971) The role of Alnus in improving the forest environment. Plant Soil 35:335–348

    Google Scholar 

  • Ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). www. canoco. com. Accessed 25 Nov 2019

    Google Scholar 

  • Tesfaye A (2015) Site characteristics and regeneration studies of bani oak (Quercus glauca Thunberg) in Himachal Pradesh. PhD Thesis. University of Horticulture and Forestry, Solan, India

    Google Scholar 

  • Thorne KS, Flammang RA, Å»ytkow AN (1981) Stationary spherical accretion into black holes-I. equations of structure monthly. Notices Roy Astron Soc 194:475–484

    Google Scholar 

  • Timilsina N, Ross MS, Heinen JT (2007) A community analysis of sal (Shorea robusta) forests in the western Terai of Nepal. For Ecol Manag 241:223–234

    Google Scholar 

  • Vinther E (1983) Invasion of Alnus glutinosa (L.) Gaertn. In a former grazed meadow in relation to different grazing intensities. Biol Conserv 25:75–89

    Google Scholar 

  • Wada H, Tachibana H, Fuchino H, Tanaka N (1998) Three new diarylheptanoid glycosides from Alnus japonica. Chem Pharm Bull 46:1054–1055

    CAS  Google Scholar 

  • Yan W (2001) GGEbiplot-a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J 93:1111–1118

    Google Scholar 

  • Yarcı C, Serin M, Altay V (2007) The segetal vegetation of Kocaeli Province (Turkey). Ekoloji 16(63):23–33

    Google Scholar 

  • Younessi-Hamzekhanlu M, Ozturk M, Altay V et al (2020) Ethnopharmacological study of medicinal plants from Khoy city of West Azerbaijan-Iran. Indian J Tradit Knowl 19(2):251–267

    Google Scholar 

  • Zohary M (1973) Geobotanical foundations of the Middle East. Gustav Fischer – Verlag, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ul Haq, Z., Rasheed, S., Manan, F., Kamran, S., Shah, S.A., Ahmad, H. (2022). Phytosociological Studies, Economic Value, and Sustainable Use of Alnus nitida: A Monophyletic Species of the Western Himalayas and Hindu Kush Region of the Sino-Japanese Belt of Pakistan. In: Öztürk, M., Khan, S.M., Altay, V., Efe, R., Egamberdieva, D., Khassanov, F.O. (eds) Biodiversity, Conservation and Sustainability in Asia. Springer, Cham. https://doi.org/10.1007/978-3-030-73943-0_16

Download citation

Publish with us

Policies and ethics