Skip to main content

Artificial Intelligence in Nanotechnology: Recent Trends, Challenges and Future Perspectives

  • Conference paper
  • First Online:
CMBEBIH 2021 (CMBEBIH 2021)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 84))

Included in the following conference series:

  • 1081 Accesses

Abstract

Nanoscience and nanotechnology are two overlapping areas of human activity, that take into consideration characteristics and utilization of nanoscale materials, and thus have applications in majority of science fields. Nanoscience and nanotechnology can be used in conjunction with Artificial Intelligence, since they are present in various fields ranging from medical diagnostics to robotics. Advancements in precision of medicine were highly influenced by nanomaterials. This paper is a review of artificial intelligence in nanotechnology, and was done through a literature review of 10 papers. According to the available literature on different platforms, it can be concluded that the concern for artificial intelligence in nanotechnology has been highly increased in the past decade. The paper presents how this combination of sophisticated techniques can be used for different medical purposes, and with different methodologies of both, artificial intelligence and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drexler, K.E.: Nanotechnology: from Feynman to funding. Bull. Sci. Technol. Soc. 24(1), 21–27 (2004). https://doi.org/10.1177/0270467604263113

    Article  Google Scholar 

  2. Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524–526 (1990). https://doi.org/10.1038/344524a0

    Article  Google Scholar 

  3. Eigler, D.M., Weiss, P.S., Schweizer, E.K., Lang, N.D.: Imaging Xe with a lowtemperature scanning tunneling microscope. Phys. Rev. Lett. 66(9), 1189 (1991). https://doi.org/10.1103/PhysRevLett.66.1189

    Article  Google Scholar 

  4. Peterson, C.L.: Nanotechnology: from Feynman to the grand challenge of molecular manufacturing. IEEE Technol. Soc. Mag. 23(4), 9–15 (2004). https://doi.org/10.1109/MTAS.2004.1371633

    Article  Google Scholar 

  5. Tolochko, N.K.: History of nanotechnology. Encyclo. Life Support Syst. (EOLSS) (2009)

    Google Scholar 

  6. Miklicanin Omanovic, E., Badnjevic, A.: Uvod u nanotehnologiju (1st ed., pp. 7–34). Sarajevo: Univerzitet u Sarajevu, Poljoprivredno-prehrambeni fakultet (2017)

    Google Scholar 

  7. Catic, A., Gurbeta, L., Kurtovic-Kozaric, A., Mehmedbasic, S., Badnjevic, A.: Application of Neural Networks for classification of Patau, Edwards, down, turner and klinefelter syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. BMC Med. Genomics, 11(19) (2018). https://doi.org/10.1186/s12920-018

  8. Abdel-Ilah, L., Zukic, S., Veljovic, E., Badnjevic, A., Gurbeta, L.: Quantitative structure activity relationship and artificial neural networks in design of benzimidazoles as antiproliferative agents. Res. J. Pharm. Biol. Chem. Sci. (Res. J. Pharm., Biol. Chem. Sci.) (2019)

    Google Scholar 

  9. Kovačević, Z., Pokvić, L.G., Spahić, L., Badnjević, A.: Prediction of medical device performance using machine learning techniques: infant incubator case study. Health Technol. 10, 151–155 (2020). https://doi.org/10.1007/s12553-019-00386-5

  10. Spahić, L., Šehović, E., Šećerović, A., Đozić, Z., Smajlović-Skenderagić, L.: Lactose intolerance prediction using artificial neural networks. In: International Conference on Medical and Biological Engineering, pp. 505–510). Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17971-7_75

  11. Mulhall, D.: Our Molecular Future: How Nanotechnology, Robotics, Genetics and Artificial Intelligence Will Transform Our World. Prometheus Books, Buffalo (2010)

    Google Scholar 

  12. Ahmad, J., Akhter, S., Rizwanullah, M., Ahmed Khan, M., Pigeon, L.T., Addo, R., Amjad Kamal, M.: Nanotechnology based theranostic approaches in Alzheimer’s disease management: current status and future perspective. Curr. Alzheimer Res. 14(11), 1164–1181 (2017). https://doi.org/10.2174/1567205014666170508121031

  13. McLarty, J., Wu, C., Wu, C.H., McLarty, J.W.: Neural networks and genome informatics (Methods in computational biology and biochemistry; v. 1) (1st ed.). Elsevier (2000)

    Google Scholar 

  14. Bishop, C.M.: Pattern Recognition and Machine Learning (Singapore: Springer) (2006)

    Google Scholar 

  15. Wang, Y., Sun, S., Zhang, Z., Shi, D.: Nanomaterials for cancer precision medicine. Adv. Mater. 30(17), 1705660 (2018). https://doi.org/10.1002/adma.201705660

    Article  Google Scholar 

  16. Lammers, T., Aime, S., Hennink, W.E., Storm, G., Kiessling, F.: Theranostic nanomedicine. Acc. Chem. Res. 44(10), 1029–1038 (2011). https://doi.org/10.1021/ar200019c

    Article  Google Scholar 

  17. Fischer, H.C., Chan, W.C.: Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18(6), 565–571 (2007). https://doi.org/10.1016/j.copbio.2007.11.008

    Article  Google Scholar 

  18. Fu, P.P., Xia, Q., Hwang, H.M., Ray, P.C., Yu, H.: Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22(1), 64–75 (2014)

    Google Scholar 

  19. Jia, L.: Global governmental investment in nanotechnologies. Curr. Nanosci. 1(3), 263–266 (2005). https://doi.org/10.2174/157341305774642957

    Article  Google Scholar 

  20. Thrall, J.H.: Nanotechnology and medicine. Radiology 230(2), 315–318 (2004). https://doi.org/10.1148/radiol.2302031698

    Article  Google Scholar 

  21. Ohayon, S., Girsault, A., Nasser, M., Shen-Orr, S., Meller, A.: Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification. PLoS Comput. Biol. 15(5), (2019). https://doi.org/10.1371/journal.pcbi.1007067

    Article  Google Scholar 

  22. Ko, J., Hemphill, M., Yang, Z., Sewell, E., Na, Y.J., Sandsmark, D.K., Haber, M., Fisher, S.A., Torre, E.A., Svane, K.C., Omelchenko, A., Firestein, B.L., Diaz-Arrastia, R., Kim, J., Meaney, D.F., Issadore, D.: Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip, 18(23), 3617–3630 (2018). https://doi.org/10.1039/c8lc00672e

  23. Wick, R.R., Judd, L.M., Holt, K.E.: Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20(1), 129 (2019). https://doi.org/10.1186/s13059-019-1727-y

    Article  Google Scholar 

  24. Yamankurt, G., Berns, E.J., Xue, A., Lee, A., Bagheri, N., Mrksich, M., Mirkin, C.A.: Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3(4), 318–327 (2019). https://doi.org/10.1038/s41551-019-0351-1)

  25. Schilling, J., Nepomuceno, A.I., Planchart, A., Yoder, J.A., Kelly, R.M., Muddiman, D.C., Reading, B.J.: Machine learning reveals sex‐specific 17β‐estradiol‐responsive expression patterns in white perch (Morone Americana) plasma proteins. Proteomics, 15(15), 2678–2690 (2015). https://doi.org/10.1002/pmic.201400606

  26. Aghajani, M.H., Pashazadeh, A.M., Mostafavi, S.H., Abbasi, S., Hajibagheri-Fard, M.J., Assadi, M., Aghajani, M.: Size control in the nanoprecipitation process of stable iodine (127 I) using microchannel reactor—optimization by artificial neural networks. Aaps Pharmscitech, 16(5), 1059–1068 (2015). https://doi.org/10.1208/s12249-015-0293-1

  27. Barash, O., Zhang, W., Halpern, J.M., Hua, Q.L., Pan, Y.Y., Kayal, H., Khoury, K., Liu, H., Davies, M.P., Haick, H.: Differentiation between genetic mutations of breast cancer by breath volatolomics. Oncotarget, 6(42), 44864–44876 (2015). https://doi.org/10.18632/oncotarget.6269

  28. Kosaka, P.M., Pini, V., Ruz, J.J., Da Silva, R.A., González, M.U., Ramos, D., Tamayo, J.: Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 9(12), 1047 (2014). https://doi.org/10.1038/nnano.2014.250

    Article  Google Scholar 

  29. Nakhleh, M.K., Amal, H., Jeries, R., Broza, Y.Y., Aboud, M., Gharra, A., Ivgi, H., Khatib, S., Badarneh, S., Har-Shai, L., Glass-Marmor, L., Lejbkowicz, I., Miller, A., Badarny, S., Winer, R., Finberg, J., Cohen-Kaminsky, S., Perros, F., Montani, D., Girerd, B., Haick, H.: Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano, 11(1), 112–125 (2017). https://doi.org/10.1021/acsnano.6b04930

  30. Ballard, Z.S., Shir, D., Bhardwaj, A., Bazargan, S., Sathianathan, S., Ozcan, A.: Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano 11(2), 2266–2274 (2017). https://doi.org/10.1021/acsnano.7b00105

    Article  Google Scholar 

  31. Liu, Q., Fang, L., Yu, G., Wang, D., Xiao, C.L., Wang, K.: Detection of DNA base modifications by deep recurrent neural network on oxford nanopore sequencing data. Nat. Commun. 10(1), 2449 (2019). https://doi.org/10.1038/s41467-019-10168-2

    Article  Google Scholar 

  32. Zhou, L., Liu, Y., Wang, F., Jia, Z., Zhou, J., Jiang, T., et al.: Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers. Talanta 188, 238–244 (2018). https://doi.org/10.1016/j.talanta.2018.05.070

    Article  Google Scholar 

  33. Baghaei, B., Saeb, M.R., Jafari, S.H., Khonakdar, H.A., Rezaee, B., Goodarzi, V., Mohammadi, Y.: Modeling and closed-loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery. J. Appl. Polym. Sci. 134, 45145 (2017). https://doi.org/10.1002/app.45145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amra Džuho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrvat, F., Aleta, A., Džuho, A., Hasanić, O., Spahić Bećirović, L. (2021). Artificial Intelligence in Nanotechnology: Recent Trends, Challenges and Future Perspectives. In: Badnjevic, A., Gurbeta Pokvić, L. (eds) CMBEBIH 2021. CMBEBIH 2021. IFMBE Proceedings, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-73909-6_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73909-6_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73908-9

  • Online ISBN: 978-3-030-73909-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics