Skip to main content

Phenotyping Root System Architecture, Anatomy, and Physiology to Understand Soil Foraging

  • Chapter
  • First Online:
High-Throughput Crop Phenotyping

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Increasing plant resilience in the face of climate change is a major challenge for the next century. At the same time, combatting environmental pollution from fertilizer use in agriculture is necessary. Optimized root systems would allow crops to withstand drought and to more efficiently use fertilizer, which in turn would drive plant growth and yield performance. Because roots are difficult to access in the soil, they are difficult to measure, or phenotype. This “phenotyping gap” is a major impediment to research seeking to understand how roots forage and influence crop performance. At the same time, even known important root traits, or phenes, are difficult to incorporate into crop breeding programs that rely on selection pressure towards beneficial phene states. However, progress in root phenotyping has been made with accessible tools available now for root system architecture. Root anatomy and physiology are the new frontiers for high-throughput phenotyping of crop roots. This chapter highlights the most practical methods to use for field root phenotyping, with a focus on how these methods could be combined to phenotype multiple root phenes sequentially. Dense root phene datasets would allow statistical insights to be made for understanding how root phene integration is important for crop performance. These methods are ready to use today, so the way forward to address the “phenotyping gap” to understand and breed for root phenes is clear. We have to get in the field, get our hands dirty, dig harder, and dig deeper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson JA, Wells DM (2017) An updated protocol for high throughput plant tissue sectioning. Front Plant Sci 8:1721

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishopp A, Lynch JP (2015) The hidden half of crop yields. Nat Plants 1:15117

    Article  PubMed  Google Scholar 

  • Böhm W (2012) Methods of studying root systems, vol 33. Springer Science & Business Media

    Google Scholar 

  • Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: high—throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Research 192:21–32

    Article  Google Scholar 

  • Burridge JD, Black CK, Nord EA, Postma JA, Sidhu JS, York LM, Lynch JP (2020) An analysis of soil coring strategies to estimate root depth in maize (Zea mays) and common bean (Phaseolus vulgaris). Plant Phenomics 2020:1–20

    Article  CAS  Google Scholar 

  • Burton AL, Williams M, Lynch JP, Brown KM (2012) RootScan: software for high-throughput analysis of root anatomical traits. Plant Soil 357:189–203

    Article  CAS  Google Scholar 

  • Burton AL, Lynch JP, Brown KM (2013) Spatial distribution and phenotypic variation in root cortical aerenchyma of maize (Zea mays L.). Plant Soil 367:263–274

    Article  CAS  Google Scholar 

  • Chimungu JG, Brown KM, Lynch JP (2014a) Large root cortical cell size improves drought tolerance in maize (Zea mays L.). Plant Physiol 166:2166–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chimungu JG, Brown KM, Lynch JP (2014b) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol 166:1943–1955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colombi T, Kirchgessner N, Le Marié CA, York LM, Lynch JP, Hund A (2015) Next generation shovelomics: set up a tent and REST. Plant Soil 388:1–20

    Article  CAS  Google Scholar 

  • Das A, Schneider H, Burridge J, Ascanio AK, Wojciechowski T, Topp CN, Lynch JP, Weitz JS, Bucksch A (2015) Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods 11:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshel A, Beeckman T (ed) (2013) Plant roots: the hidden half. CRC Press

    Google Scholar 

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, Prieto I, Wurzburger N, Zadworny M, Bagniewska-Zadworna A, Blancaflor EB, Brunner I, Gessler A, Hobbie SE, Iversen CM, Mommer L, Picon-Cochard C, Postma JA, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Sun T, Valverde-Barrantes OJ, Weigelt A, York LM, Stokes A (In Press a) Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist

    Google Scholar 

  • Freschet GT, Pagès LL, Iversen C, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia N, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes De Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML (In Press b) A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. New Phyt

    Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67:4545–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garré S, Coteur I, Wongleecharoen C, Hussain K, Omsunrarn W, Kongkaew T, Hilger T, Diels J, Vanderborght J (2013) Can we use electrical resistivity tomography to measure root zone dynamics in fields with multiple crops? Procedia Environ Sci 19:403–410

    Article  Google Scholar 

  • Grafton RQ, Williams J, Jiang Q (2015) Food and water gaps to 2050: preliminary results from the global food and water system (GFWS) platform. Food Security 7:209–220

    Article  Google Scholar 

  • Grift TE, Novais J, Bohn M (2011) High-throughput phenotyping technology for maize roots. Biosys Eng 110:40–48

    Article  Google Scholar 

  • Griffiths M, York LM (2020) Targeting root uptake kinetics for increasing plant productivity and nutrient use efficiency. Plant Physiol 182:1854–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths M, Roy S, Guo H, Seethepalli A, Huhman D, Ge Y, Sharp RE, Fritschi FB, York LM (2021) A multiple ion-uptake phenotyping platform reveals shared mechanisms that affect nutrient uptake by maize roots. Plant Phys 185:781–795

    Google Scholar 

  • Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X-F, York LM (In Press) Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. New Phytologist

    Google Scholar 

  • Jaramillo RE, Nord EA, Chimungu JG, Brown KM, Lynch JP (2013) Root cortical burden influences drought tolerance in maize. Ann Bot 112:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. 1913:3–15

    Google Scholar 

  • Johnson M, Tingey D, Phillips D, Storm M (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

    Article  PubMed  Google Scholar 

  • Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66:5389–5401

    Article  CAS  PubMed  Google Scholar 

  • Lartaud M, Perin C, Courtois B, Thomas E, Henry S, Bettembourg M, Divol F, Lanau N, Artus F, Bureau C, Verdeil J-L, Sarah G, Guiderdoni E, Dievart A (2014) PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification. Front Plant Science 5:790

    Google Scholar 

  • Le Marié CA, York LM, Strigens A, Malosetti M, Camp K-H, Giuliani S, Lynch JP, Hund A (2019) Shovelomics root traits assessed on the EURoot maize panel are highly heritable across environments but show low genotype-by-nitrogen interaction. Euphytica 215 10(2019):1–22

    Google Scholar 

  • Liu X, Dong X, Xue Q, Leskovar DI, Jifon J, Butnor JR, Marek T (2018) Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil 423:517–531

    Article  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2015) Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ

    Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister R, Rajani M, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19:779–788

    Article  CAS  PubMed  Google Scholar 

  • Möller B, Chen H, Schmidt T, Zieschank A, Patzak R, Türke M, Weigelt A, Posch S (2019) rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of time-series images from minirhizotrons. Plant Soil 444:519–534

    Article  CAS  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J 2013:12

    Article  CAS  Google Scholar 

  • Paez-Garcia A, Motes C, Scheible W-R, Chen R, Blancaflor E, Monteros M (2015) Root traits and phenotyping strategies for plant improvement. Plants 4:334–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Ann Rev Plant Physiol Plant Mol Biol 39:245–265

    Article  Google Scholar 

  • Pieruschka R, Poorter H (2012) Phenotyping plants: genes, phenes and machines. Funct Plant Biol 39:813–820

    Article  PubMed  Google Scholar 

  • Pound MP, French AP, Wells DM, Bennett MJ, Pridmore TP (2012) CellSeT: novel software to extract and analyze structured networks of plant cells from confocal images. Plant Cell 24:1353–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans Royal Soc Lond Ser B, Biol Sci 363:447–465

    Article  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seethepalli A, York LM (2020) RhizoVision explorer—interactive software for generalized root image analysis designed for everyone (version 2.0.2). Zenodo. https://doi.org/10.5281/zenodo.3747697

  • Seethepalli A, Guo H, Liu X, Griffiths M, Almtarfi H, Li Z, Liu S, Zare A, Fritschi FB, Blancaflor EB, Ma X-F, York LM (2020) RhizoVision crown: an integrated hardware and software platform for root crown phenotyping, Plant Phenomics 1–15

    Google Scholar 

  • Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM (2021) RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. bioRxiv: 2021.2004.2011.439359

    Google Scholar 

  • Shaw R, Williams AP, Jones DL (2014) Assessing soil nitrogen availability using microdialysis-derived diffussive flux measurements. Soil Sci Soc Am J 78:1797

    Article  CAS  Google Scholar 

  • Slack S, York LM, Roghazai Y, Lynch J, Bennett M, Foulkes J (2018) Wheat shovelomics II: revealing relationships between root crown traits and crop growth. bioRxiv

    Google Scholar 

  • Smith AG, Petersen J, Selvan R, Rasmussen CR (2020) Segmentation of roots in soil with U-Net. Plant Methods 16:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Strock CF, Schneider HM, Galindo-Castaneda T, Hall BT, Van Gansbeke B, Mather DE, Roth MG, Chilvers MI, Guo X, Brown K, Lynch JP (2019) Laser ablation tomography for visualization of root colonization by edaphic organisms. J Exp Bot 70:5327–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strock CF, Burridge JD, Niemiec MD, Brown KM, Lynch JP (2021) Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress. Plant Cell Environ 44:49–67

    Google Scholar 

  • Topp CN, Bray AL, Ellis NA, Liu Z (2016) How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J Integr Plant Biol 58:213–225

    Article  PubMed  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch J (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  • Trachsel S, Kaeppler S, Brown K, Lynch J (2013) Maize root growth angles become steeper under low N conditions. Field Crops Res 140:18–31

    Article  Google Scholar 

  • Tracy SR, Nagel KA, Postma JA, Fassbender H, Wasson A, Watt M (2019) Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci 25(1):105–118

    Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J Plant Nutr Soil Sci 176:175–199

    Article  CAS  Google Scholar 

  • Wachsman G, Sparks EE, Benfey PN (2015) Tansley review genes and networks regulating root anatomy and architecture. New Phytologist 208(1):26–38

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2014) Update on root exudation and rhizosphere biology. Root Exudation Rhizosphere Biol 1(132):44–51

    Google Scholar 

  • Wang T, Rostamza M, Song Z, Wang L, McNickle G, Iyer-Pascuzzi AS, Qiu Z, Jin J (2019) SegRoot: a high throughput segmentation method for root image analysis. Comput Electron Agric 162:845–854

    Article  Google Scholar 

  • Wasson AP, Richards R, Chatrath R, Misra S, Prasad SS, Rebetzke G, Kirkegaard J, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498

    Article  CAS  PubMed  Google Scholar 

  • Wasson A, Bischof L, Zwart A, Watt M (2016) A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. J Exp Bot 67:1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver JE (1925) Investigations on the root habits of plants. Am J Bot 12:502–509

    Article  Google Scholar 

  • Weaver JE, Bruner WE (1926) Root development of field crops. McGraw-Hill

    Google Scholar 

  • Xu W, Yu G, Zare A, Zurweller B, Rowland D, Reyes-Cabrera J, Fritschi FB, Matamala R, Juenger TE (2020) Overcoming small minirhizotron datasets using transfer learning. Comput Electron Agricult 175:105466

    Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • York LM (2018) Phenotyping crop root crowns: general guidance and specific protocols for maize, wheat, and soybean. In Ristova D, Barbez E (eds) Root development: methods and protocols. Springer, pp 23–32

    Google Scholar 

  • York LM (2019) Functional phenomics: an emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. J Exp Bot 70:379–386

    Article  CAS  PubMed  Google Scholar 

  • York LM, Lynch JP (2015) Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J Exp Bot 66:5493–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York LM, Nord E, Lynch J (2013) Integration of root phenes for soil resource acquisition. Front Plant Sci 4:355

    Article  PubMed  PubMed Central  Google Scholar 

  • York LM, Galindo-Castaneda T, Schussler JR, Lynch JP (2015) Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66:2347–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York LM, Slack S, Bennett MJ, Foulkes MJ (2018) Wheat shovelomics I: a field phenotyping approach for characterising the structure and function of root systems in tillering species. bioRxiv 280875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry M. York .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

York, L.M. (2021). Phenotyping Root System Architecture, Anatomy, and Physiology to Understand Soil Foraging. In: Zhou, J., Nguyen, H.T. (eds) High-Throughput Crop Phenotyping. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73734-4_10

Download citation

Publish with us

Policies and ethics