Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 406 Accesses

Abstract

Radiation reaction (RR) is the influence of the electromagnetic field emitted by a charged particle on its own dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau LD, Lifshitz EM (1947) The classical theory of fields. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  2. Spohn H (2004) Dynamics of charged particles and their radiation field. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Di Piazza A, Müller C, Hatsagortsyan K, Keitel CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177

    Article  ADS  Google Scholar 

  4. Jaroschek CH, Hoshino M (2009) Radiation-dominated relativistic current sheets. Phys Rev Lett 103:075002

    Article  ADS  Google Scholar 

  5. Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014) Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys Plasmas 21(5):056501

    Article  ADS  Google Scholar 

  6. Cerutti B, Philippov AA, Spitkovsky A (2016) Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. 457(3):2401

    Article  ADS  Google Scholar 

  7. Tamburini M, Pegoraro F, Piazza AD, Keitel CH, Macchi A (2010) Radiation reaction effects on radiation pressure acceleration. New J Phys 12(12):123005

    Article  Google Scholar 

  8. Sokolov IV, Naumova NM, Nees JA, Mourou GA (2010) Pair creation in QED-strong pulsed laser fields interacting with electron beams. Phys Rev Lett 105:195005

    Article  ADS  Google Scholar 

  9. Duclous R, Kirk JG, Bell AR (2011) Monte Carlo calculations of pair production in high-intensity laser-plasma interactions. Plasma Phys Controlled Fusion 53(1):015009

    Article  ADS  Google Scholar 

  10. Nerush EN, Kostyukov IY, Fedotov AM, Narozhny NB, Elkina NV, Ruhl H (2011b) Laser field absorption in self-generated electron-positron pair plasma. Phys Rev Lett 106:035001

    Article  ADS  Google Scholar 

  11. Ridgers CP, Brady CS, Duclous R, Kirk JG, Bennett K, Arber TD, Robinson APL, Bell AR (2012) Dense electron-positron plasmas and ultraintense \(\gamma \) rays from laser-irradiated solids. Phys Rev Lett 108:165006

    Article  ADS  Google Scholar 

  12. Capdessus R, d’Humières E, Tikhonchuk VT (2013) Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities. Phys Rev Lett 110:215003

    Article  ADS  Google Scholar 

  13. Blackburn TG, Ridgers CP, Kirk JG, Bell AR (2014) Quantum radiation reaction in laser-electron-beam collisions. Phys Rev Lett 112:015001

    Article  ADS  Google Scholar 

  14. Gonoskov A et al (2015) Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys Rev E 92:023305

    Article  ADS  Google Scholar 

  15. Lobet M, Ruyer C, Debayle A, d’Humières E, Grech M, Lemoine M, Gremillet L (2015) Ultrafast synchrotron-enhanced thermalization of laser-driven colliding pair plasmas. Phys Rev Lett 115:215003

    Article  ADS  Google Scholar 

  16. Vranic M, Grismayer T, Fonseca RA, Silva LO (2016) Quantum radiation reaction in head-on laser-electron beam interaction. New J Phys 18(7):073035

    Article  Google Scholar 

  17. Martins JL, Vranic M, Grismayer T, Vieira J, Fonseca RA, Silva LO (2016) Modelling radiation emission in the transition from the classical to the quantum regime. Plasma Phys Controlled Fusion 58(1):014035

    Article  ADS  Google Scholar 

  18. Lobet M, Davoine X, d’Humières E, Gremillet L (2017) Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser. Phys Rev Accel Beams 20:043401

    Article  ADS  Google Scholar 

  19. Grismayer T, Vranic M, Martins JL, Fonseca RA, Silva LO (2017) Seeded QED cascades in counterpropagating laser pulses. Phys Rev E 95:023210

    Article  ADS  Google Scholar 

  20. Cros B, Paradkar B, Davoine X, Chancé A, Desforges F, Dobosz-Dufrénoy S, Delerue N, Ju J, Audet T, Maynard G, Lobet M, Gremillet L, Mora P, Schwindling J, Delferrière O, Bruni C, Rimbault C, Vinatier T, Piazza AD, Grech M, Riconda C, Marquès J, Beck A, Specka A, Martin P, Monot P, Normand D, Mathieu F, Audebert P, Amiranoff F (2014) Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX. Nucl Instrum Methods Phys Res Sect A 740:27 – 33. Proceedings of the first European Advanced Accelerator Concepts Workshop 2013

    Google Scholar 

  21. Cole JM, et al (2017) Experimental observation of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. arXiv:1707.06821

  22. Poder K, et al (2017) Evidence of strong radiation reaction in the field of an ultra-intense laser. arXiv:1709.01861

  23. Extreme light infrastructure (ELI). https://eli-laser.eu/

  24. Neitz N, Piazza AD (2013) Stochasticity effects in quantum radiation reaction. Phys Rev Lett 111(054802):054802

    Article  ADS  Google Scholar 

  25. Niel F, Riconda C, Amiranoff F, Duclous R, Grech M (2018) From quantum to classical modeling of radiation reaction: a focus on stochasticity effects. Phys Rev E 97:043209

    Article  ADS  Google Scholar 

  26. Ridgers CP (2017) Signatures of quantum effect on radiation reaction in laser-electron-beam collisions. arXiv:1708.04511

  27. Harvey CN, Gonoskov A, Ilderton A, Marklund M (2017) Quantum quenching of radiation losses in short laser pulses. Phys Rev Lett 118:105004

    Article  ADS  Google Scholar 

  28. Di Piazza A, Hatsagortsyan KZ, Keitel CH (2010) Quantum radiation reaction effects in multiphoton compton scattering. Phys Rev Lett 105:220403

    Article  Google Scholar 

  29. Neitz N, Di Piazza A (2014) Electron-beam dynamics in a strong laser field including quantum radiation reaction. Phys Rev A 90:022102

    Article  ADS  Google Scholar 

  30. Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J, Riconda C, Grech M (2018) SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput Phys Commun 222(Supplement C):351–373

    Article  ADS  MathSciNet  Google Scholar 

  31. Di Piazza A (2018) Implementing nonlinear compton scattering beyond the local-constant-field approximation. Phys Rev A 98(012134):012134

    Article  ADS  Google Scholar 

  32. Nikishov AI, Ritus VI (1964) Quantum processes in the field of a plane electromagnetic wave and in a constant field. Sov Phys J Exp Theor Phys 19(529):529

    MathSciNet  Google Scholar 

  33. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  34. Erber T (1966) High-energy electromagnetic conversion processes in intense magnetic fields. Rev Mod Phys 38:626–659

    Article  ADS  MathSciNet  Google Scholar 

  35. Ridgers C, Kirk J, Duclous R, Blackburn T, Brady C, Bennett K, Arber T, Bell A (2014) Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions. J Comput Phys 260:273–285

    Article  ADS  MathSciNet  Google Scholar 

  36. Elkina NV, Fedotov AM, Kostyukov IY, Legkov MV, Narozhny NB, Nerush EN, Ruhl H (2011a) QED cascades induced by circularly polarized laser fields. Phys Rev ST Accel Beams 14(054401):054401

    Article  ADS  Google Scholar 

  37. Neitz N, Piazza AD (2013) Stochasticity effects in quantum radiation reaction. Phys Rev Lett 111(054802):054802

    Article  ADS  Google Scholar 

  38. Lapeyre B, Pardoux E, Sentis R (1998) Méthode de Monte-Carlo pour les équations de transport et de diffusion. Springer, Heidelberg

    MATH  Google Scholar 

  39. Lobet M, d’Humières E, Grech M, Ruyer C, Davoine X, Gremillet L (2016) Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction. J Phys Conf Ser 688(1):012058

    Article  Google Scholar 

  40. Zenitani S (2015) Loading relativistic Maxwell distributions in particle simulations. Phys Plasmas 22(4):042116

    Article  ADS  Google Scholar 

  41. Niel F, Riconda C, Amiranoff F, Lobet M, Derouillat J, Pérez F, Vinci T, Grech M (2018b) From quantum to classical modeling of radiation reaction: a focus on the radiation spectrum. Plasma Phys Controlled Fusion 60(9):094002

    Article  ADS  Google Scholar 

  42. Thomas AGR, Ridgers CP, Bulanov SS, Griffin BJ, Mangles SPD (2012) Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam. Phys Rev X 2:041004

    Google Scholar 

  43. Ilderton A, Torgrimsson G (2013a) Radiation reaction from QED: lightfront perturbation theory in a plane wave background. Phys Rev D 88:025021

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Niel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niel, F. (2021). Photon Distribution Function. In: Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-73547-0_7

Download citation

Publish with us

Policies and ethics