Skip to main content

Environmental Toxicology

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 67 Accesses

Abstract

Environmental toxicology investigates the adverse effects caused by natural and synthetic pollutants in all living organisms of ecosystems and at all levels of biological organization from molecules via cells, tissues, and individual organisms up to population, community, and ecosystem levels. In doing so, it includes ecological processes, i.e., the interrelationship of organisms and their interaction with the environment. The overall goal of environmental toxicology is a better understanding of the processes of toxic substances and their effects within the environment in order to derive useful measures. With industrialization and the increasing production of new chemicals, as well as the recurring occurrence of disasters caused by man-made pollutants, the relevance of environmental toxicology continues to increase. This chapter focuses on ecotoxicity testing since the results of ecotoxicity tests are the decision-making basis for threshold values and legal regulations. After an overview of ecotoxicological tests, criteria to be considered when conducting tests are described and the limits and expressive power of ecotoxicological tests are discussed. Additionally, this chapter summarizes the different approaches of bioindication and environmental monitoring as well as environmental screening methods and briefly introduces the steps associated with ecotoxicological risk assessment. Finally, three examples, i.e., the analgesic diclofenac, endocrine disruptors, and antibiotics, illustrate the significance of pharmaceuticals and their effects on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Adeel M, Song X, Wang Y, Francis D, Yang Y (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119. https://doi.org/10.1016/j.envint.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  • Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319–1330. https://doi.org/10.1016/S0045-6535(02)00769-5

    Article  CAS  PubMed  Google Scholar 

  • Asturiol D, Worth A (2011) The use of chemical reactivity assays in toxicity prediction. JRC Scientific and Technical Reports, EUR 24870 EN – 2011, European Commission. Joint Research Centre. Institute for Health and Consumer Protection. https://doi.org/10.2788/32962

  • Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, Dorne J-LCM (2022) In silico methods for environmental risk assessment: principles, tiered approaches, applications, and future perspectives. In: Benfenati E (ed) In silico methods for predicting drug toxicity. Springer US, New York, pp 589–636

    Chapter  Google Scholar 

  • aus der Beek T, Weber F-A, Bergmann A, Grüttner G, Carius A (2016) Pharmaceuticals in the environment: global occurrence and potential cooperative action under the Strategic Approach to International Chemicals Management (SAICM). Texte 67/2016 Report No. (UBA-FB) 002331/ENG, German Environment Agency Dessau-Roßlau

    Google Scholar 

  • Bhattacharjee BG, Khurana PSM (2014) In vitro reporter assays for screening of chemicals that disrupt androgen signaling. J Toxicol 2014:1–7. https://doi.org/10.1155/2014/701752

    Article  Google Scholar 

  • Brzóska MM, Moniuszko-Jakoniuk J (2001) Interactions between cadmium and zinc in the organism. Food Chem Toxicol 39:967–980. https://doi.org/10.1016/S0278-6915(01)00048-5

    Article  PubMed  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin Company, Boston

    Google Scholar 

  • Chavoshani A, Hashemi M, Mehdi Amin M, Ameta SC (2020) Introduction. In: Micropollutants and challenges. Elsevier, Amsterdam, pp 1–33. https://doi.org/10.1016/B978-0-12-818612-1.00001-5

    Chapter  Google Scholar 

  • Dean JR (2007) Bioavailability, bioaccessibility and mobility of environmental contaminants. Wiley, Chichester

    Book  Google Scholar 

  • Dietrich MR, Ankeny RA, Crowe N, Green S, Leonelli S (2020) How to choose your research organism. Stud Hist Phil Sci Part C 80:101227. https://doi.org/10.1016/j.shpsc.2019.101227

    Article  Google Scholar 

  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a framework for community action in the field of water policy. Off J Eur Communities L 327(1):1–72

    Google Scholar 

  • Directive 2008/32/EC of the European Parliament and of the Council of 11 March 2008 Amending directive 2000/60/EC establishing a framework for community action in the field of water policy, as regards the implementing powers conferred on the commission. Off J Eur Communities L 81:60–61

    Google Scholar 

  • Duffus JH, Nordberg M, Templeton DM (2007) Glossary of terms used in toxicology, 2nd edition (IUPAC recommendations 2007). Pure Appl Chem 79:1153–1344. https://doi.org/10.1351/pac200779071153

    Article  CAS  Google Scholar 

  • Dusi E, Rybicki M, Jungmann D (2019) The database “pharmaceuticals in the environment” – update and new analysis. Texte 67/2019. German Environment Agency, Dessau-Roßlau

    Google Scholar 

  • Escher B, Neale P, Leusch F (2021) Bioanalytical tools in water quality assessment, 2nd edn. IWA Publishing, London. http://iwaponline.com/ebooks/book-pdf/899726/wio9781789061987.pdf

    Book  Google Scholar 

  • EU (2018) Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362). Off J Eur Communities L 141:9–12

    Google Scholar 

  • European Commission (2018) Technical guidance for deriving environmental quality standards. European Commission, Directorate-General for Health and Food Safety, Luxembourg. https://doi.org/10.2875/018826. https://data.europa.eu/

    Book  Google Scholar 

  • Fatima A, Younas I, Ali MW (2022) An overview on recent advances in biosensor technology and its future application. Arch Pharm Pract 13:5–10. https://doi.org/10.51847/LToGI43jil

    Article  Google Scholar 

  • Gomez Cortes L, Marinov D, Sanseverino I, Navarro Cuenca A, Niegowska M, Porcel Rodriguez E, Lettieri T (2020) Selection of substances for the 3rd Watch List under the Water Framework Directive. EUR 30297 EN. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/194067. JRC121346

    Book  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Band 2: Allgemeine Entwickelungsgeschichte der Organismen. Druck und Verlag von Georg Reimer, Berlin

    Book  Google Scholar 

  • Hermens JLM, Ankley GT, Sumpter JP (2004) Ecotoxicology – a multidisciplinary, problem-driven science. Environ Sci Technol 38:446A–447A. https://doi.org/10.1021/es040672f

    Article  CAS  PubMed  Google Scholar 

  • ISO (2007) Water quality – determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – part 1: method using freshly prepared bacteria. ISO 11348-1

    Google Scholar 

  • ISO (2020) Water and soil quality – determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). ISO 10872

    Google Scholar 

  • ISO/TS (2006) Water quality – guidance on statistical interpretation of ecotoxicity data. ISO/TS 20281

    Google Scholar 

  • Joachim S, Beaudouin R, Daniele G, Geffard A, Bado-Nilles A, Tebby C, Palluel O, Dedourge-Geffard O, Fieu M, Bonnard M, Palos-Ladeiro M, Turiès C, Vulliet E, David V, Baudoin P, James A, Andres S, Porcher JM (2021) Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. Ecotoxicol Environ Saf 211:111812. https://doi.org/10.1016/j.ecoenv.2020.111812

    Article  CAS  PubMed  Google Scholar 

  • Kavlock RJ, Daston GR, DeRosa C, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Rolland R, Sheehan M, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104:26

    Google Scholar 

  • Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5. https://doi.org/10.1006/rtph.1996.1076

    Article  CAS  PubMed  Google Scholar 

  • Kloas W, Urbatzka R, Opitz R, Würtz S, Behrends T, Hermelink B, Hofmann F, Jagnytsch O, Kroupova H, Lorenz C, Neumann N, Pietsch C, Trubiroha A, Van Ballegooy C, Wiedemann C, Lutz I (2009) Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163:187–200. https://doi.org/10.1111/j.1749-6632.2009.04453.x

    Article  CAS  PubMed  Google Scholar 

  • Kreutzer A, Faetsch S, Heise S, Hollert H, Witt G (2022) Passive dosing: assessing the toxicity of individual PAHs and recreated mixtures to the microalgae Raphidocelis subcapitata. Aquat Toxicol 249:106220. https://doi.org/10.1016/j.aquatox.2022.106220

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I (2020) Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 94:1–58. https://doi.org/10.1007/s00204-019-02613-4

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1929) The progress of physiology. Am J Physiol 90:243–251

    Article  Google Scholar 

  • Kunkel U, Radke M (2008) Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment. Environ Sci Technol 42:7273–7279. https://doi.org/10.1021/es801562j

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne M, Zimmermann S, Smit NJ, Erasmus JH, Nachev M, Sures B, Wepener V (2021) Laboratory and field studies on the use of artificial mussels as a monitoring tool of platinum exposure in the freshwater environment. Environ Sci Eur 33:16. https://doi.org/10.1186/s12302-021-00461-7

    Article  CAS  Google Scholar 

  • Lai KP, Gong Z, Tse WKF (2021) Zebrafish as the toxicant screening model: transgenic and omics approaches. Aquat Toxicol 234:105813. https://doi.org/10.1016/j.aquatox.2021.105813

    Article  CAS  PubMed  Google Scholar 

  • Landis WG, Sofield RM, Yu M-H (2018) Introduction to environmental toxicology: molecular substructures to ecological landscapes, 8th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Leverett D, Merrington G, Crane M, Ryan J, Wilson I (2021) Environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms. Environ Sci Eur 33:133. https://doi.org/10.1186/s12302-021-00574-z

    Article  CAS  Google Scholar 

  • Maack G, Äystö L, Carere M, Clausen H, James A, Junghans M, Junttila V, Hollender J, Marinov D, Stroomberg G, Triebskorn R, Verbruggen E, Lettieri T (2022) Comment on environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms. Environ Sci Eur 34:24. https://doi.org/10.1186/s12302-022-00599-y

    Article  CAS  Google Scholar 

  • McCarty LS, Power M, Munkittrick KR (2002) Bioindicators versus biomarkers in ecological risk assessment. Hum Ecol Risk Assess Int J 8:159–164. https://doi.org/10.1080/20028091056791

    Article  Google Scholar 

  • Moermond CTA, Kase R, Korkaric M, Ågerstrand M (2016) CRED: criteria for reporting and evaluating ecotoxicity data. Environ Toxicol Chem 35:1297–1309. https://doi.org/10.1002/etc.3259

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Opo R, Carapeto R, Casimiro R, Rubio C-l, Muñoz B, Moreno I, Aymerich M (2021) The veterinary use of diclofenac and vulture conservation in Spain: updated evidence and socio-ecological implications. Sci Total Environ 796:148851. https://doi.org/10.1016/j.scitotenv.2021.148851

    Article  CAS  PubMed  Google Scholar 

  • Newman MC (2020) Fundamentals of ecotoxicology: the science of pollution, 5th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Nordberg M, Templeton DM, Andersen O, Duffus JH (2009) Glossary of terms used in ecotoxicology (IUPAC Recommendations 2009). Pure Appl Chem 81(5):829–970. https://doi.org/10.1351/PAC-REC-08-07-09

    Article  CAS  Google Scholar 

  • OECD (2011) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test, OECD guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris. https://doi.org/10.1787/9789264069923-en

    Book  Google Scholar 

  • OECD (2018) Revised guidance document 150 on standardised test guidelines for evaluating chemicals for endocrine disruption. OECD series on testing and assessment. OECD Publishing, Paris. https://doi.org/10.1787/9789264304741-en

    Book  Google Scholar 

  • OECD (2019) Test no. 203: fish, acute toxicity test, OECD guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris. https://doi.org/10.1787/9789264069961-en

    Book  Google Scholar 

  • OECD (2021a) Test no. 249: fish cell line acute toxicity – the RTgill-W1 cell line assay, OECD guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris. https://doi.org/10.1787/c66d5190-en

    Book  Google Scholar 

  • OECD (2021b) Test no. 250: EASZY assay – detection of endocrine active substances, acting through estrogen receptors, using transgenic tg(cyp19a1b:GFP) zebrafish embrYos, OECD guidelines for the testing of chemicals, Section 2. OECD Publishing, Paris. https://doi.org/10.1787/0a39b48b-en

    Book  Google Scholar 

  • Posthuma L, Suter GW, Traas TP (2002) Species sensitivity distributions in ecotoxicology. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Rehberger K, Kropf C, Segner H (2018) In vitro or not in vitro: a short journey through a long history. Environ Sci Eur 30:23. https://doi.org/10.1186/s12302-018-0151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvito D, Fernandez M, Jenner K, Lyon DY, Knecht J, Mayer P, MacLeod M, Eisenreich K, Leonards P, Cesnaitis R, León-Paumen M, Embry M, Déglin SE (2020) Improving the environmental risk assessment of substances of unknown or variable composition, complex reaction products, or biological materials. Environ Toxicol Chem 39:2097–2108. https://doi.org/10.1002/etc.4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanseverino I, Navarro Cuenca A, Loos R, Marinov D, Lettieri T (2018) State of the art on the contribution of water to antimicrobial resistance. EUR 29592 EN. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/771124. ISBN 978-92-79-98478-5, JRC114775

    Book  Google Scholar 

  • SCHEER (2022a) Scientific opinion on “draft environmental quality standards for priority substances under the Water Framework Directive” – azithromycin. European Commission, Scientific Committee on Health, Environmental and Emerging Risks

    Google Scholar 

  • SCHEER (2022b) Scientific opinion on “draft environmental quality standards for priority substances under the Water Framework Directive” – clarithromycin. European Commission, Scientific Committee on Health, Environmental and Emerging Risks

    Google Scholar 

  • Singer C, Zimmermann S, Sures B (2005) Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures. Aquat Toxicol 75:65–75. https://doi.org/10.1016/j.aquatox.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67(2):143–154. https://doi.org/10.1016/j.aquatox.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  • Sorgog K, Kamo M (2019) Quantifying the precision of ecological risk: conventional assessment factor method vs. species sensitivity distribution method. Ecotoxicol Environ Saf 183:109494. https://doi.org/10.1016/j.ecoenv.2019.109494

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Schirmer K (2017) Cell culture-based biosensing techniques for detecting toxicity in water. Curr Opin Biotechnol 45:59–68. https://doi.org/10.1016/j.copbio.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  • Truhaut R (1977) Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf 1:151–173

    Article  CAS  PubMed  Google Scholar 

  • UBA (2014) EQS datasheet environmental quality standard – erythromycin. On behalf of the Federal Environment Agency (Umweltbundesamt, UBA) Germany Datasheet_Erythromycin_EQS_Proposal_May_2014_FKZ 3712 28 232

    Google Scholar 

  • Umweltbundesamt (2022) The UBA database – “Pharmaceuticals in the environment”|Umweltbundesamt. https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0. Accessed 20 June 2022

  • US EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment associated contaminants with freshwater invertebrates. United States Environmental Protection Agency, Office of Research and Development, Mid Continent Ecology Division; Office of Science and Technology. Office of Water PB2001-102682(EPA/600-R-99-064)

    Google Scholar 

  • US EPA (2022) Ecological risk assessment|US EPA. https://www.epa.gov/risk/ecological-risk-assessment. Assessed 18 June 2022

  • Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Wright DA, Welbourn P (2002) Environmental toxicology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wu RSS, Lau TC, Fung WKM, Ko PH, Leung KMY (2007) An ‘artificial mussel’ for monitoring heavy metals in marine environments. Environ Pollut 145:104–110. https://doi.org/10.1016/j.envpol.2006.03.053

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X (2020) Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 19:9. https://doi.org/10.1186/s12938-020-0752-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Zimmermann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zimmermann, S., Sures, B. (2023). Environmental Toxicology. In: Hock, F.J., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_138-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_138-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics