Skip to main content

Investigation of the Effects of Trehalose on Glycemic Indices in Streptozotocin-Induced Diabetic Rats

  • Chapter
  • First Online:
Natural Products and Human Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 January 2022

    The book was inadvertently published with an incorrect affiliation of the author Amir Abbas Momtazi-Borojeni in chapters 9 and 33.This has now been updated.

References

  1. Mayer-Davis, E. J., Lawrence, J. M., Dabelea, D., Divers, J., Isom, S., Dolan, L., et al. (2017). Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. New England Journal of Medicine, 376(15), 1419–1429.

    Article  Google Scholar 

  2. Yaribeygi, H., Butler, A. E., Barreto, G. E., & Sahebkar, A. (2019). Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. Journal of Cellular Physiology, 234(3), 2436–2446.

    Article  CAS  Google Scholar 

  3. Abraham, T. M., Pencina, K. M., Pencina, M. J., & Fox, C. S. (2015). Trends in diabetes incidence: The Framingham Heart Study. Diabetes Care, 38(3), 482–487.

    Article  Google Scholar 

  4. Kuziemski, K., Slominski, W., & Jassem, E. (2019). Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocrine Disorders, 19(1), 2.

    Article  Google Scholar 

  5. Arneth, B., Arneth, R., & Shams, M. (2019). Metabolomics of type 1 and type 2 diabetes. International Journal of Molecular Sciences, 20(10), 2467.

    Article  Google Scholar 

  6. Mizunoe, Y., Kobayashi, M., Sudo, Y., Watanabe, S., Yasukawa, H., Natori, D., et al. (2018). Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biology, 15, 115–124.

    Article  CAS  Google Scholar 

  7. Elbein, A. D. (1974). The metabolism of α, α-trehalose. In Advances in carbohydrate chemistry and biochemistry (Vol. 30, pp. 227–256). Amsterdam: Elsevier.

    Google Scholar 

  8. Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7), 1263–1269.

    Article  CAS  Google Scholar 

  9. Tanaka, K. (2009). Development of Treha (R) and its properties. Food Industries, 52(4551), 19.

    Google Scholar 

  10. Mathlouthi, M. (1981). X-ray diffraction study of the molecular association in aqueous solutions of D-fructose, D-glucose, and sucrose. Carbohydrate Research, 91(2), 113–123.

    Article  CAS  Google Scholar 

  11. Ekdawi-Sever, N. C., Conrad, P. B., & de Pablo, J. J. (2001). Molecular simulation of sucrose solutions near the glass transition temperature. The Journal of Physical Chemistry A, 105(4), 734–742.

    Article  CAS  Google Scholar 

  12. Ohtake, S., & Wang, Y. J. (2011). Trehalose: Current use and future applications. Journal of Pharmaceutical Sciences, 100(6), 2020–2053.

    Article  CAS  Google Scholar 

  13. Mizote, A., Yamada, M., Yoshizane, C., Arai, N., Maruta, K., Arai, S., et al. (2016). Daily intake of trehalose is effective in the prevention of lifestyle-related diseases in individuals with risk factors for metabolic syndrome. Journal of Nutritional Science and Vitaminology, 62(6), 380–387.

    Article  CAS  Google Scholar 

  14. Yoshizane, C., Mizote, A., Yamada, M., Arai, N., Arai, S., Maruta, K., et al. (2017). Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutrition Journal, 16(1), 9.

    Article  Google Scholar 

  15. Arai, C., Arai, N., Mizote, A., Kohno, K., Iwaki, K., Hanaya, T., et al. (2010). Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutrition Research, 30(12), 840–848.

    Article  CAS  Google Scholar 

  16. Yaribeygi, H., Yaribeygi, A., Sathyapalan, T., & Sahebkar, A. (2019). Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(3), 2214–2218.

    Article  Google Scholar 

  17. Close, B., Banister, K., Baumans, V., Bernoth, E.-M., Bromage, N., Bunyan, J., et al. (1997). Recommendations for euthanasia of experimental animals: Part 2. Laboratory Animals, 31(1), 1–32.

    Article  CAS  Google Scholar 

  18. Close, B., Banister, K., Baumans, V., Bernoth, E.-M., Bromage, N., Bunyan, J., et al. (1996). Recommendations for euthanasia of experimental animals: Part 1. Laboratory Animals, 30(4), 293–316.

    Article  CAS  Google Scholar 

  19. Sato, S., Okamoto, K., Minami, R., Kohri, H., & Yamamoto, S. (1999). Trehalose can be used as a parenteral saccharide source in rabbits. The Journal of Nutrition, 129(1), 158–164.

    Article  CAS  Google Scholar 

  20. Beattie, G. M., Crowe, J. H., Lopez, A. D., Cirulli, V., Ricordi, C., & Hayek, A. (1997). Trehalose: A cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes, 46(3), 519–523.

    Article  CAS  Google Scholar 

  21. Pan, H., Ding, Y., Yan, N., Nie, Y., Li, M., & Tong, L. (2018). Trehalose prevents sciatic nerve damage to and apoptosis of Schwann cells of streptozotocin-induced diabetic C57BL/6J mice. Biomedicine & Pharmacotherapy, 105, 907–914.

    Article  CAS  Google Scholar 

  22. Lin, C.-F., Kuo, Y.-T., Chen, T.-Y., & Chien, C.-T. (2016). Quercetin-rich guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules, 21(3), 334.

    Article  Google Scholar 

  23. Hosseinpour-Moghaddam, K., Caraglia, M., & Sahebkar, A. (2018). Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. Journal of Cellular Physiology, 233(9), 6524–6543.

    Article  CAS  Google Scholar 

  24. Chen, C.-H., Yao, T., Zhang, Q., He, Y.-M., Xu, L.-H., Zheng, M., et al. (2016). Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation. RSC Advances, 6(18), 15240–15246.

    Article  CAS  Google Scholar 

  25. Lee, H. J., Yoon, Y. S., & Lee, S. J. (2018). Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction. Cell Death & Disease, 9(7), 712.

    Article  Google Scholar 

  26. Xu, C., Chen, X., Sheng, W.-B., & Yang, P. (2019). Trehalose restores functional autophagy suppressed by high glucose. Reproductive Toxicology, 85, 51–58.

    Article  CAS  Google Scholar 

  27. Arai, C., Miyaki, M., Matsumoto, Y., Mizote, A., Yoshizane, C., Hanaya, Y., et al. (2013). Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. Journal of Nutritional Science and Vitaminology, 59(5), 393–401.

    Article  CAS  Google Scholar 

  28. Taya, K., Hirose, K., & Hamada, S. (2009). Trehalose inhibits inflammatory cytokine production by protecting IκB-α reduction in mouse peritoneal macrophages. Archives of Oral Biology, 54(8), 749–756.

    Article  CAS  Google Scholar 

  29. Yoshizane, C., Mizote, A., Arai, C., Arai, N., Ogawa, R., Endo, S., et al. (2020). Daily consumption of one teaspoon of trehalose can help maintain glucose homeostasis: A double-blind, randomized controlled trial conducted in healthy volunteers. Nutrition Journal, 19(1), 1–9.

    Article  Google Scholar 

  30. van Can, J. G., van Loon, L. J., Brouns, F., & Blaak, E. E. (2012). Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: Implications for postprandial substrate use in impaired glucose-tolerant subjects. British Journal of Nutrition, 108(7), 1210–1217.

    Article  Google Scholar 

  31. Mizote, A., Yamada, M., Yoshizane, C., Arai, N., Maruta, K., Arai, S., et al. (2016). Daily intake of trehalose is effective in the prevention of lifestyle-related diseases in individuals with risk factors for metabolic syndrome. Journal of Nutritional Science and Vitaminology (Tokyo), 62(6), 380–387.

    Article  CAS  Google Scholar 

  32. Walmagh, M., Zhao, R., & Desmet, T. (2015). Trehalose analogues: Latest insights in properties and biocatalytic production. International Journal of Molecular Sciences, 16(6), 13729–13745.

    Article  CAS  Google Scholar 

Download references

Conflict of Interests

None.

Funding

 This study was supported by a grant from the Mashhad University of Medical Sciences Research Council. The authors are also thankful for the financial support from the National Institute for Medical Research Development (NIMAD), Tehran, Iran (Grant no: 987820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radbakhsh, S. et al. (2021). Investigation of the Effects of Trehalose on Glycemic Indices in Streptozotocin-Induced Diabetic Rats. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_33

Download citation

Publish with us

Policies and ethics