Skip to main content

Hereditary Cancer Syndromes and Inherited Cancer Risks

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1706 Accesses

Abstract

Genetic testing for hereditary cancer syndromes and acquired malignancies is a routine part of personalized cancer treatment. Identifying germline variants for hereditary cancer syndromes and predisposition risks of non-hematologic and hematologic malignancies provide invaluable information for future screening for both patients and family members. Although different methodologies have been utilized, the application of next-generation sequencing technology, either using gene panels, exome sequencing, or whole-genome sequencing, has primarily replaced sequential single gene testing. Massively parallel sequencing has permitted the analysis of multiple genes at the same time and became an affordable mean in clinical practice to increase the possibility of finding the causal mutation while reducing the amount and ultimately cost of diagnostic testing. Differentiating between germline variants and tumor-associated somatic mutations is important in the clinical interpretation of molecular sequencing results, guiding confirmatory germline testing, and expediting appropriate genetic counseling. These concepts, highlighted by several cases are included in the second part of the chapter. Seven presented cases illustrate the process of assessing genetic variants of hereditary cancer syndromes with respect to family history and tumor-associated somatic testing. Identifying cancer-predisposing pathogenic variants benefit patients by personalizing their medical management, including surveillance, early preventive interventions, and modification of treatment strategies, and it also facilitates identification of at risk family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hereditary Cancer Syndromes and Risk Assessment. ACOG Committee Opinion, Number 793. Obstet Gynecol. 2019;134(6):e143–e9. https://doi.org/10.1097/AOG.0000000000003562.

    Article  Google Scholar 

  2. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–8. https://doi.org/10.1038/nature12981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92. https://doi.org/10.1200/JCO.2005.10.042.

    Article  PubMed  Google Scholar 

  4. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  5. Schneider K, Zelley K, Nichols KE, Garber J. Li-Fraumeni syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  6. Eng C. PTEN Hamartoma tumor syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  7. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159. https://doi.org/10.1186/s13023-016-0543-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Duraturo F, Liccardo R, De Rosa M, Izzo P. Genetics, diagnosis and treatment of Lynch syndrome: old lessons and current challenges. Oncol Lett. 2019;17(3):3048–54. https://doi.org/10.3892/ol.2019.9945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jasperson KW, Patel SG, Ahnen DJ. APC-associated polyposis conditions. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  10. Kaurah P, Huntsman DG. Hereditary diffuse gastric cancer. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  11. Larsen Haidle J, Howe JR. Juvenile polyposis syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  12. McGarrity TJ, Amos CI, Baker MJ. Peutz-Jeghers Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  13. Gironi LC, Colombo E, Farinelli P, Giorgione R, Bozzola C, Ogliara P, et al. Germline CDKN2A mutations in childhood melanoma: a case of melanoma-pancreatic cancer syndrome. Int J Dermatol. 2015;54(12):e553–5. https://doi.org/10.1111/ijd.12933.

    Article  CAS  PubMed  Google Scholar 

  14. Bottillo I, Valiante M, Menale L, Paiardini A, Papi L, Janson G, et al. A novel CDKN2A in-frame deletion associated with pancreatic cancer-melanoma syndrome. Dermatol Online J. 2020;26(8)

    Google Scholar 

  15. Shelton C, Solomon S, LaRusch J, Whitcomb DC. PRSS1-related hereditary pancreatitis. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  16. Shelton C, LaRusch J, Whitcomb DC. Pancreatitis overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  17. Khattab A, Monga DK. Turcot syndrome. Treasure Island: StatPearls; 2020.

    Google Scholar 

  18. Fornasarig M, Gasparotto D, Foltran L, Campigotto M, Lombardi S, Del Savio E, et al. A novel kindred with familial gastrointestinal stromal tumors caused by a rare KIT germline mutation (N655K): clinico-pathological presentation and TKI sensitivity. J Pers Med. 2020;10(4) https://doi.org/10.3390/jpm10040234.

  19. Halpern AL, Torphy RJ, McCarter MD, Sciotto CG, Glode LM, Robinson WA. A familial germline mutation in KIT associated with achalasia, mastocytosis and gastrointestinal stromal tumors shows response to kinase inhibitors. Cancer Genet. 2019.;233–234:1–6. https://doi.org/10.1016/j.cancergen.2019.02.001.

  20. Das S, Salami SS, Spratt DE, Kaffenberger SD, Jacobs MF, Morgan TM. Bringing prostate cancer germline genetics into clinical practice. J Urol. 2019;202(2):223–30. https://doi.org/10.1097/JU.0000000000000137.

    Article  PubMed  Google Scholar 

  21. Giri VN, Hegarty SE, Hyatt C, O'Leary E, Garcia J, Knudsen KE, et al. Germline genetic testing for inherited prostate cancer in practice: implications for genetic testing, precision therapy, and cascade testing. Prostate. 2019;79(4):333–9. https://doi.org/10.1002/pros.23739.

    Article  CAS  PubMed  Google Scholar 

  22. Heidegger I, Tsaur I, Borgmann H, Surcel C, Kretschmer A, Mathieu R, et al. Hereditary prostate cancer – primetime for genetic testing? Cancer Treat Rev. 2019;81:101927. https://doi.org/10.1016/j.ctrv.2019.101927.

    Article  CAS  PubMed  Google Scholar 

  23. Sajorda BJ, Gonzalez-Gandolfi CX, Hathaway ER, Kalish JM. Simpson-Golabi-Behmel syndrome Type 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  24. van Leeuwaarde RS, Ahmad S, Links TP, Giles RH. Von Hippel-Lindau syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  25. Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229–49. https://doi.org/10.1038/nrendo.2017.166.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dome JS, Huff V. Wilms tumor predisposition. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  27. Sattler EC, Steinlein OK. Birt-Hogg-Dube syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  28. Smith PS, Whitworth J, West H, Cook J, Gardiner C, Lim DHK, et al. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer. 2020;59(6):333–47. https://doi.org/10.1002/gcc.22833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kato T, Franconi CP, Sheridan MB, Hacker AM, Inagakai H, Glover TW, et al. Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation. Cancer Genet. 2014;207(4):133–40. https://doi.org/10.1016/j.cancergen.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poland KS, Azim M, Folsom M, Goldfarb R, Naeem R, Korch C, et al. A constitutional balanced t(3;8)(p14;q24.1) translocation results in disruption of the TRC8 gene and predisposition to clear cell renal cell carcinoma. Genes Chromosomes Cancer. 2007;46(9):805–12. https://doi.org/10.1002/gcc.20466.

    Article  CAS  PubMed  Google Scholar 

  31. Nemes K, Bens S, Bourdeaut F, Hasselblatt M, Kool M, Johann P, et al. Rhabdoid tumor predisposition syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  32. Else T, Greenberg S, Fishbein L. Hereditary paraganglioma-pheochromocytoma syndromes. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  33. Lohmann DR, Gallie BL. Retinoblastoma. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  34. Wuyts W, Schmale GA, Chansky HA, Raskind WH. Hereditary multiple osteochondromas. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  35. Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol. 2020;61:158–66. https://doi.org/10.1016/j.semcancer.2019.10.016.

    Article  CAS  PubMed  Google Scholar 

  36. Trpkov K, Hes O, Agaimy A, Bonert M, Martinek P, Magi-Galluzzi C, et al. Fumarate Hydratase-deficient renal cell carcinoma is strongly correlated with Fumarate Hydratase mutation and hereditary Leiomyomatosis and renal cell carcinoma syndrome. Am J Surg Pathol. 2016;40(7):865–75. https://doi.org/10.1097/PAS.0000000000000617.

    Article  PubMed  Google Scholar 

  37. Chayed Z, Kristensen LK, Ousager LB, Ronlund K, Bygum A. Hereditary leiomyomatosis and renal cell carcinoma: a case series and literature review. Orphanet J Rare Dis. 2021;16(1):34. https://doi.org/10.1186/s13023-020-01653-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oshima J, Martin GM, Hisama FM. Werner syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  39. Giusti F, Marini F, Brandi ML. Multiple Endocrine Neoplasia Type 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  40. Eng C. Multiple Endocrine Neoplasia Type 2. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  41. Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, et al. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36(1):77–90. https://doi.org/10.1007/s10555-017-9661-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bresler SC, Padwa BL, Granter SR. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Head Neck Pathol. 2016;10(2):119–24. https://doi.org/10.1007/s12105-016-0706-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: update on syndromes and management: genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol. 2016;74(3):395–407.; quiz 8–10. https://doi.org/10.1016/j.jaad.2015.08.038.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lopes S, Vide J, Moreira E, Azevedo F. Cowden syndrome: clinical case and a brief review. Dermatol Online J. 2017;23(8)

    Google Scholar 

  45. Friedman JM. Neurofibromatosis 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  46. Evans DG. Neurofibromatosis 2. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  47. Northrup H, Koenig MK, Pearson DA, Au KS. Tuberous sclerosis complex. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  48. Stratakis CA, Raygada M. Carney complex. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  49. Tawana K, Rio-Machin A, Preudhomme C, Fitzgibbon J. Familial CEBPA-mutated acute myeloid leukemia. Semin Hematol. 2017;54(2):87–93. https://doi.org/10.1053/j.seminhematol.2017.04.001.

    Article  PubMed  Google Scholar 

  50. Tawana K, Wang J, Renneville A, Bodor C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126(10):1214–23. https://doi.org/10.1182/blood-2015-05-647172.

    Article  CAS  PubMed  Google Scholar 

  51. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8. https://doi.org/10.1111/nyas.12346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McReynolds LJ, Calvo KR, Holland SM. Germline GATA2 mutation and bone marrow failure. Hematol Oncol Clin North Am. 2018;32(4):713–28. https://doi.org/10.1016/j.hoc.2018.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Diness BR, Risom L, Frandsen TL, Hansen B, Andersen MK, Schmiegelow K, et al. Putative new childhood leukemia cancer predisposition syndrome caused by germline bi-allelic missense mutations in DDX41. Genes Chromosomes Cancer. 2018;57(12):670–4. https://doi.org/10.1002/gcc.22680.

    Article  CAS  PubMed  Google Scholar 

  54. Cheah JJC, Hahn CN, Hiwase DK, Scott HS, Brown AL. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106(2):163–74. https://doi.org/10.1007/s12185-017-2260-y.

    Article  CAS  PubMed  Google Scholar 

  55. Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016;57(3):520–36. https://doi.org/10.3109/10428194.2015.1115041.

    Article  CAS  PubMed  Google Scholar 

  56. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070–82. https://doi.org/10.1182/blood-2016-10-687830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yokota A, Huo L, Lan F, Wu J, Huang G. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells. 2020;43(2):145–52. https://doi.org/10.14348/molcells.2019.0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kewan T, Noss R, Godley LA, Rogers HJ, Carraway HE. Inherited thrombocytopenia caused by germline ANKRD26 mutation should be considered in young patients with suspected myelodysplastic syndrome. J Investig Med High Impact Case Rep. 2020;8:2324709620938941. https://doi.org/10.1177/2324709620938941.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Perez Botero J, Dugan SN, Anderson MW. ANKRD26-related thrombocytopenia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  60. Rampersaud E, Ziegler DS, Iacobucci I, Payne-Turner D, Churchman ML, Schrader KA, et al. Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv. 2019;3(7):1039–46. https://doi.org/10.1182/bloodadvances.2018030635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47(5):535–8. https://doi.org/10.1038/ng.3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol. 2019;16(4):227–40. https://doi.org/10.1038/s41571-018-0136-6.

    Article  CAS  PubMed  Google Scholar 

  63. Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W, Zhang H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018;33(5):937–48. e8. https://doi.org/10.1016/j.ccell.2018.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Auer F, Ruschendorf F, Gombert M, Husemann P, Ginzel S, Izraeli S, et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia. 2014;28(5):1136–8. https://doi.org/10.1038/leu.2013.363.

    Article  CAS  PubMed  Google Scholar 

  65. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K, et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood. 2013;122(14):2425–32. https://doi.org/10.1182/blood-2013-05-500850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296–307. https://doi.org/10.1038/s41588-018-0315-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226–31. https://doi.org/10.1038/ng.2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abedalthagafi M. Constitutional mismatch repair-deficiency: current problems and emerging therapeutic strategies. Oncotarget. 2018;9(83):35458–69. https://doi.org/10.18632/oncotarget.26249.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770–8. https://doi.org/10.1136/jmedgenet-2015-103299.

    Article  CAS  PubMed  Google Scholar 

  70. Tanase-Nakao K, Olson TS, Narumi S. MIRAGE syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  71. Phowthongkum P, Chen DH, Raskind WH, Bird TD. SAMD9L-related ataxia-pancytopenia syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  72. Bannon SA, DiNardo CD. Hereditary predispositions to myelodysplastic syndrome. Int J Mol Sci. 2016;17(6) https://doi.org/10.3390/ijms17060838.

  73. Kirwan M, Walne AJ, Plagnol V, Velangi M, Ho A, Hossain U, et al. Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am J Hum Genet. 2012;90(5):888–92. https://doi.org/10.1016/j.ajhg.2012.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flanagan M, Cunniff CM. Bloom syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  75. Mehta PA, Tolar J. Fanconi anemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  76. Banka S. G6PC3 deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  77. Chandra S, Bronicki L, Nagaraj CB, Zhang K. WAS-related disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  78. Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032. https://doi.org/10.1038/nrdp.2017.32.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nelson A, Myers K. Shwachman-Diamond syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  80. Clinton C, Gazda HT. Diamond-Blackfan anemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  81. Varon R, Demuth I, Chrzanowska KH. Nijmegen breakage syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  82. Bleesing JJH, Nagaraj CB, Zhang K. Autoimmune lymphoproliferative syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  83. Han SS, Wen KK, Vyas YM. Deficiency of Wiskott-Aldrich syndrome protein has opposing effect on the pro-oncogenic pathway activation in nonmalignant versus malignant lymphocytes. Oncogene. 2021;40(2):345–54. https://doi.org/10.1038/s41388-020-01533-3.

    Article  CAS  PubMed  Google Scholar 

  84. Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher incidence of B cell malignancies in primary immunodeficiencies: a combination of intrinsic genomic instability and exocytosis defects at the immunological synapse. Front Immunol. 2020;11:581119. https://doi.org/10.3389/fimmu.2020.581119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States immune deficiency network registry. J Allergy Clin Immunol. 2018;141(3):1028–35. https://doi.org/10.1016/j.jaci.2017.05.024.

    Article  PubMed  Google Scholar 

  86. Smpokou P, Zand DJ, Rosenbaum KN, Summar ML. Malignancy in Noonan syndrome and related disorders. Clin Genet. 2015;88(6):516–22. https://doi.org/10.1111/cge.12568.

    Article  CAS  PubMed  Google Scholar 

  87. Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51(10):689–97. https://doi.org/10.1136/jmedgenet-2014-102611.

    Article  CAS  PubMed  Google Scholar 

  88. Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2019;12(12):1037–52. https://doi.org/10.1080/17474086.2019.1662720.

    Article  CAS  PubMed  Google Scholar 

  89. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  91. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70. https://doi.org/10.1016/s0092-8674(00)81333-1.

    Article  CAS  PubMed  Google Scholar 

  92. Stieglitz E, Loh ML. Genetic predispositions to childhood leukemia. Ther Adv Hematol. 2013;4(4):270–90. https://doi.org/10.1177/2040620713498161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nickels EM, Soodalter J, Churpek JE, Godley LA. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 2013;4(4):254–69. https://doi.org/10.1177/2040620713487399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seif AE. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 2011;204(5):227–44. https://doi.org/10.1016/j.cancergen.2011.04.005.

    Article  PubMed  Google Scholar 

  95. Czuchlewski DR, Peterson LC. Myeloid neoplasms with germline predisposition: a new provisional entity within the World Health Organization classification. Surg Pathol Clin. 2016;9(1):165–76. https://doi.org/10.1016/j.path.2015.09.010.

    Article  PubMed  Google Scholar 

  96. Zhang MY, Keel SB, Walsh T, Lee MK, Gulsuner S, Watts AC, et al. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity. Haematologica. 2015;100(1):42–8. https://doi.org/10.3324/haematol.2014.113456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ghemlas I, Li H, Zlateska B, Klaassen R, Fernandez CV, Yanofsky RA, et al. Improving diagnostic precision, care and syndrome definitions using comprehensive next-generation sequencing for the inherited bone marrow failure syndromes. J Med Genet. 2015;52(9):575–84. https://doi.org/10.1136/jmedgenet-2015-103270.

    Article  CAS  PubMed  Google Scholar 

  98. Furutani E, Shimamura A. Germline genetic predisposition to hematologic malignancy. J Clin Oncol. 2017;35(9):1018–28. https://doi.org/10.1200/JCO.2016.70.8644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19(7):796–802. https://doi.org/10.1038/gim.2016.197.

    Article  CAS  PubMed  Google Scholar 

  100. Shimamura A. Aplastic anemia and clonal evolution: germ line and somatic genetics. Hematology Am Soc Hematol Educ Program. 2016;2016(1):74–82. https://doi.org/10.1182/asheducation-2016.1.74.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  102. Godley LA. Inherited predisposition to acute myeloid leukemia. Semin Hematol. 2014;51(4):306–21. https://doi.org/10.1053/j.seminhematol.2014.08.001.

    Article  PubMed  Google Scholar 

  103. Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia – a review. Br J Haematol. 2008;140(2):123–32. https://doi.org/10.1111/j.1365-2141.2007.06909.x.

    Article  CAS  PubMed  Google Scholar 

  104. Churpek JE, Lorenz R, Nedumgottil S, Onel K, Olopade OI, Sorrell A, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma. 2013;54(1):28–35. https://doi.org/10.3109/10428194.2012.701738.

    Article  PubMed  Google Scholar 

  105. Board PCGE: Cancer genetics risk assessment and counseling (PDQ®): Health Professional Version. 2020. https://www.ncbi.nlm.nih.gov/books/NBK65817/. Accessed 28 Jan 2021.

  106. Szymaniak BM, Facchini LA, Giri VN, Antonarakis ES, Beer TM, Carlo MI, et al. Practical considerations and challenges for germline genetic testing in patients with prostate cancer: recommendations from the germline genetics working group of the PCCTC. JCO Oncol Pract. 2020;16(12):811–9. https://doi.org/10.1200/OP.20.00431.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cohen SA, Bradbury A, Henderson V, Hoskins K, Bednar E, Arun BK. Genetic Counseling and testing in a community setting: quality, access, and efficiency. Am Soc Clin Oncol Educ Book. 2019;39:e34–44. https://doi.org/10.1200/EDBK_238937.

    Article  PubMed  Google Scholar 

  108. Samadder NJ, Riegert-Johnson D, Boardman L, Rhodes D, Wick M, Okuno S, et al. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. JAMA Oncol. 2020; https://doi.org/10.1001/jamaoncol.2020.6252.

  109. LaDuca H, Polley EC, Yussuf A, Hoang L, Gutierrez S, Hart SN, et al. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet Med. 2020;22(2):407–15. https://doi.org/10.1038/s41436-019-0633-8.

    Article  CAS  PubMed  Google Scholar 

  110. Mandelker D, Zhang L, Kemel Y, Stadler ZK, Joseph V, Zehir A, et al. Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA. 2017;318(9):825–35. https://doi.org/10.1001/jama.2017.11137.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ritter DI, Rao S, Kulkarni S, Madhavan S, Offit K, Plon SE. A case for expert curation: an overview of cancer curation in the Clinical Genome Resource (ClinGen). Cold Spring Harb Mol Case Stud. 2019;5(5) https://doi.org/10.1101/mcs.a004739.

  112. Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 2020; https://doi.org/10.1002/humu.24152.

  113. Gould GM, Grauman PV, Theilmann MR, Spurka L, Wang IE, Melroy LM, et al. Detecting clinically actionable variants in the 3′ exons of PMS2 via a reflex workflow based on equivalent hybrid capture of the gene and its pseudogene. BMC Med Genet. 2018;19(1):176. https://doi.org/10.1186/s12881-018-0691-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mandelker D, Zhang L. The emerging significance of secondary germline testing in cancer genomics. J Pathol. 2018;244(5):610–5. https://doi.org/10.1002/path.5031.

    Article  CAS  PubMed  Google Scholar 

  115. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun. 2018;9(1):3962. https://doi.org/10.1038/s41467-018-06485-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sakamoto Y, Sereewattanawoot S, Suzuki A. A new era of long-read sequencing for cancer genomics. J Hum Genet. 2020;65(1):3–10. https://doi.org/10.1038/s10038-019-0658-5.

    Article  PubMed  Google Scholar 

  117. van der Lee M, Kriek M, Guchelaar HJ, Swen JJ. Technologies for pharmacogenomics: a review. Genes (Basel). 2020;11(12) https://doi.org/10.3390/genes11121456.

  118. Feurstein S, Zhang L, DiNardo CD. Accurate germline RUNX1 variant interpretation and its clinical significance. Blood Adv. 2020;4(24):6199–203. https://doi.org/10.1182/bloodadvances.2020003304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kraft IL, Godley LA. Identifying potential germline variants from sequencing hematopoietic malignancies. Hematology Am Soc Hematol Educ Program. 2020;2020(1):219–27. https://doi.org/10.1182/hematology.2020006910.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lincoln SE, Nussbaum RL, Kurian AW, Nielsen SM, Das K, Michalski S, et al. Yield and utility of germline testing following tumor sequencing in patients with cancer. JAMA Netw Open. 2020;3(10):e2019452. https://doi.org/10.1001/jamanetworkopen.2020.19452.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rhees J, Arnold M, Boland CR. Inversion of exons 1-7 of the MSH2 gene is a frequent cause of unexplained Lynch syndrome in one local population. Familial Cancer. 2014;13(2):219–25. https://doi.org/10.1007/s10689-013-9688-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Peixoto A, Santos C, Rocha P, Pinheiro M, Principe S, Pereira D, et al. The c.156_157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Res Treat. 2009;114(1):31–8. https://doi.org/10.1007/s10549-008-9978-4.

    Article  CAS  PubMed  Google Scholar 

  123. George A, Kaye S, Banerjee S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat Rev Clin Oncol. 2017;14(5):284–96. https://doi.org/10.1038/nrclinonc.2016.191.

    Article  CAS  PubMed  Google Scholar 

  124. Meric-Bernstam F, Brusco L, Daniels M, Wathoo C, Bailey AM, Strong L, et al. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann Oncol. 2016;27(5):795–800. https://doi.org/10.1093/annonc/mdw018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Batalini F, Peacock EG, Stobie L, Robertson A, Garber J, Weitzel JN, et al. Li-Fraumeni syndrome: not a straightforward diagnosis anymore-the interpretation of pathogenic variants of low allele frequency and the differences between germline PVs, mosaicism, and clonal hematopoiesis. Breast Cancer Res. 2019;21(1):107. https://doi.org/10.1186/s13058-019-1193-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Godley LA, Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood. 2017;130(4):424–32. https://doi.org/10.1182/blood-2017-02-735290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Niehaus A, Azzariti DR, Harrison SM, DiStefano MT, Hemphill SE, Senol-Cosar O, et al. A survey assessing adoption of the ACMG-AMP guidelines for interpreting sequence variants and identification of areas for continued improvement. Genet Med. 2019;21(8):1699–701. https://doi.org/10.1038/s41436-018-0432-7.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet. 2016;98(6):1067–76. https://doi.org/10.1016/j.ajhg.2016.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang S, Lincoln SE, Kobayashi Y, Nykamp K, Nussbaum RL, Topper S. Sources of discordance among germ-line variant classifications in ClinVar. Genet Med. 2017;19(10):1118–26. https://doi.org/10.1038/gim.2017.60.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, et al. Gene-specific criteria for PTEN variant curation: recommendations from the ClinGen PTEN Expert Panel. Hum Mutat. 2018;39(11):1581–92. https://doi.org/10.1002/humu.23636.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lee K, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E, et al. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat. 2018;39(11):1553–68. https://doi.org/10.1002/humu.23650.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ellard S, Hattersley AT, Brewer CM, Vaidya B. Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clin Endocrinol. 2005;62(2):169–75. https://doi.org/10.1111/j.1365-2265.2005.02190.x.

    Article  CAS  Google Scholar 

  135. White HD, Blair J, Pinkney J, Cuthbertson DJ, Day R, Weber A, et al. Improvement in the care of multiple endocrine neoplasia type 1 through a regional multidisciplinary clinic. QJM. 2010;103(5):337–45. https://doi.org/10.1093/qjmed/hcq020.

    Article  CAS  PubMed  Google Scholar 

  136. Leclerc J, Flament C, Lovecchio T, Delattre L, Ait Yahya E, Baert-Desurmont S, et al. Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation. Genet Med. 2018;20(12):1589–99. https://doi.org/10.1038/gim.2018.47.

    Article  CAS  PubMed  Google Scholar 

  137. Ward RL, Dobbins T, Lindor NM, Rapkins RW, Hitchins MP. Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry. Genet Med. 2013;15(1):25–35. https://doi.org/10.1038/gim.2012.91.

    Article  CAS  PubMed  Google Scholar 

  138. Hitchins MP. Finding the needle in a haystack: identification of cases of Lynch syndrome with MLH1 epimutation. Familial Cancer. 2016;15(3):413–22. https://doi.org/10.1007/s10689-016-9887-3.

    Article  CAS  PubMed  Google Scholar 

  139. Coffee B, Cox HC, Bernhisel R, Manley S, Bowles K, Roa BB, et al. A substantial proportion of apparently heterozygous TP53 pathogenic variants detected with a next-generation sequencing hereditary pan-cancer panel are acquired somatically. Hum Mutat. 2020;41(1):203–11. https://doi.org/10.1002/humu.23910.

    Article  CAS  PubMed  Google Scholar 

  140. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. https://doi.org/10.1182/blood-2015-03-631747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oxnard GR, Miller VA, Robson ME, Azzoli CG, Pao W, Ladanyi M, et al. Screening for germline EGFR T790M mutations through lung cancer genotyping. J Thorac Oncol. 2012;7(6):1049–52. https://doi.org/10.1097/JTO.0b013e318250ed9d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gazdar A, Robinson L, Oliver D, Xing C, Travis WD, Soh J, et al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J Thorac Oncol. 2014;9(4):456–63. https://doi.org/10.1097/JTO.0000000000000130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer. Mol Cancer Res. 2014;12(1):3–13. https://doi.org/10.1158/1541-7786.MCR-13-0539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003;100(14):8424–9. https://doi.org/10.1073/pnas.1431692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381–7. https://doi.org/10.1038/s41588-018-0204-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Monti P, Ciribilli Y, Jordan J, Menichini P, Umbach DM, Resnick MA, et al. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. Clin Cancer Res. 2007;13(13):3789–95. https://doi.org/10.1158/1078-0432.CCR-06-2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S, et al. Germline TP53 mutations in patients with early-onset colorectal cancer in the Colon Cancer Family Registry. JAMA Oncol. 2015;1(2):214–21. https://doi.org/10.1001/jamaoncol.2015.0197.

    Article  PubMed  Google Scholar 

  148. Millar S, Bradley L, Donnelly DE, Carson D, Morrison PJ. Familial pediatric endocrine tumors. Oncologist. 2011;16(10):1388–96. https://doi.org/10.1634/theoncologist.2011-0120.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Masciari S, Dewanwala A, Stoffel EM, Lauwers GY, Zheng H, Achatz MI, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet Med. 2011;13(7):651–7. https://doi.org/10.1097/GIM.0b013e31821628b6.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wagner J, Portwine C, Rabin K, Leclerc JM, Narod SA, Malkin D. High frequency of germline p53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst. 1994;86(22):1707–10. https://doi.org/10.1093/jnci/86.22.1707.

    Article  CAS  PubMed  Google Scholar 

  151. Varley JM, McGown G, Thorncroft M, James LA, Margison GP, Forster G, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999;65(4):995–1006. https://doi.org/10.1086/302575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin K. Deeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deeb, K.K., Kekis, M., Tvrdik, T. (2021). Hereditary Cancer Syndromes and Inherited Cancer Risks. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics