Skip to main content

Three Arithmetical Exponential Sums

  • Chapter
  • First Online:
Excursions in Multiplicative Number Theory

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 963 Accesses

Abstract

In this chapter, we study three (linear) exponential sums, i.e. for us, sums of the shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though A. de Moivre already knew this formula at least in 1718, and Euler gave a rigorous proof in 1765, this formula is attributed to J.P.M. Binet who published it in 1843 in [2, p. 563]. It seems that the date 1834 that one sees often on the web is due to some slippery fingers who wanted to participate to this joyous historical confusion.

References

  1. A. Balog. “On sums over primes”. In: Elementary and analytic theory of numbers (Warsaw, 1982). Vol. 17. Banach Center Publ. PWN, Warsaw, 1985, pp. 9–19 (cit. on p. 258).

    Google Scholar 

  2. M.J. Binet. “Mémoire sur l’intégration des équations linéaires aux différences finies, d’un ordre quelconque, à coefficients variables”. In: Comptes Rendus Acad. Sciences Paris 17 (1843), pp. 559–567 (cit. on p. 254).

    Google Scholar 

  3. J. Bourgain, P.C. Sarnak, and T. Ziegler. “Distjointness of Moebius from horocycle flows”. In: Dev. Math. 28 (2013), pp. 67–83. https://doi.org/10.1007/978-1-4614-4075-8_5 (cit. on p. 263).

  4. M. Cafferata, A. Perelli, and A. Zaccagnini. “An Extension of the Bourgain.Sarnak.Ziegler Theorem with Modular Applications”. In: Q. J. Math. 71.1 (2020), pp. 359–377. https://doi.org/10.1093/qmathj/haz048 (cit. on p. 264).

  5. H. Daboussi. “Fonctions multiplicatives presque périodiques B”. In: (1975). D’après un travail commun avec Hubert Delange, 321–324. Astérisque, No. 24–25 (cit. on p. 264).

    Google Scholar 

  6. H. Daboussi and H. Delange. “Quelques propriétés des fonctions multiplicatives de module au plus égal à 1”. In: C. R. Acad. Sci. Paris Sér. A 278 (1974), pp. 657–660 (cit. on p. 264).

    Google Scholar 

  7. H. Daboussi and H. Delange. “On multiplicative arithmetical functions whose modulus does not exceed one”. In: J. London Math. Soc. (2) 26.2 (1982), pp. 245–264. https://doi.org/10.1112/jlms/s2-26.2.245 (cit. on p. 264).

  8. H. Davenport. “On some infinite series involving arithmetical functions. II”. In: Quart. J. Math., Oxf. Ser. 8 (1937), pp. 313–320 (cit. on p. 265).

    Google Scholar 

  9. F. M. Dekking and M. Mendès France. “Uniform distribution modulo one: a geometrical viewpoint”. In: J. Reine Angew. Math. 329 (1981), pp. 143–153. https://doi.org/10.1515/crll.1981.329.143 (cit. on p. 260).

  10. S. Drappeau and B. Topacogullari. “Combinatorial identities and Titchmarsh’s divisor problem for multiplicative functions”. In: Algebra and Number Theory 13.10 (2020), pp. 2383–2425. https://doi.org/10.2140/ant.2019.13.2383 (cit. on p. 262).

  11. J.B. Friedlander and H. Iwaniec. Opera de cribro. Vol. 57. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2010, pp. xx+527 (cit. on p. 262).

    Google Scholar 

  12. P.X. Gallagher. “Bombieri’s mean value theorem”. In: Mathematika 15 (1968), pp. 1–6 (cit. on p. 262).

    Google Scholar 

  13. A. Granville. “An alternative to Vaughan’s identity”. In: Proceedings of the ‘Second Symposium on Analytic Number Theory’. Ed. by Rivista di Matematica della Universita di Parma. Cetraro (Italy), 8-12 July 2019, 2000, 3pp (cit. on p. 261).

    Google Scholar 

  14. A.J. Harper. “A different proof of a finite version of Vinogradov’s bilinear sum inequality (NOTES)”. In: Preprint (2011). http://warwick.ac.uk/fac/sci/maths/people/staff/harper/finitebilinearnotes.pdf (cit. on p. 265).

  15. D.R. Heath-Brown. “Sieve identities and gaps between primes”. English. In: Journees arithmétiques, Metz, 21-25 september 1981. 1982. http://www.numdam.org/item/AST_1982__94__61_0 (cit. on p. 262).

  16. H. Iwaniec and E. Kowalski. Analytic number theory. American Mathematical Society Colloquium Publications. xii+615 pp. American Mathematical Society, Providence, RI, 2004 (cit. on p. 258).

    Google Scholar 

  17. I. Kátai. “A remark on a theorem of H. Daboussi”. In: Acta Math. Hungar. 47.1-2 (1986), pp. 223–225. https://doi.org/10.1007/BF01949145 (cit. on p. 264).

  18. L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974, pp. xiv+390 (cit. on p. 262).

    Google Scholar 

  19. Y.V. Linnik. “The dispersion method in binary additive problems”. In: Leningrad (1961), 208pp (cit. on p. 262).

    Google Scholar 

  20. K. Matomaki and M. Radziwi.l. “Multiplicative functions in short intervals”. In: Ann. of Math. (2) 183.3 (2016), pp. 1015–1056. https://doi.org/10.4007/annals.2016.183.3.6 (cit. on p. 263).

  21. H.L. Montgomery. Ten lectures on the interface between analytic number theory and harmonic analysis. Vol. 84. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,Washington, DC, 1994, pp. xiv+220 (cit. on p. 262).

    Google Scholar 

  22. H.L. Montgomery and R.C. Vaughan. “Exponential sums with multiplicative coefficients”. In: Invent. Math. 43.1 (1977), pp. 69–82. https://doi.org/10.1007/BF01390204 (cit. on p. 263).

  23. O. Ramaré. Un parcours explicite en théorie multiplicative. vii+100 pp. Éditions universitaires europénnes, 2010 (cit. on p. 258).

    Google Scholar 

  24. P. Sarnak. Three Lectures on the Mobius Function Randomness and Dynamics. Tech. rep. Institute for Advanced Study, 2011. http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2)_0.pdf (cit. on p. 264).

  25. A. Sedunova. “A logarithmic improvement in the Bombieri-Vinogradov theorem”. In: J. Theor. Nombres Bordx. 31.3 (2019), pp. 635–651 (cit. on p. 262).

    Google Scholar 

  26. R.C. Vaughan. “Mean value theorems in prime number theory”. In: J. London Math Soc. (2) 10 (1975), pp. 153–162 (cit. on p. 262).

    Google Scholar 

  27. R.C. Vaughan. The Hardy-Littlewood method. Vol. 80. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge-New York, 1981, pp. xi+172 (cit. on p. 266).

    Google Scholar 

  28. I.M. Vinogradov. “Representation of an odd number as a sum of three primes”. In: Dokl. Akad. Nauk SSSR 15 (1937), pp. 291–294 (cit. on p. 257).

    Google Scholar 

  29. I.M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Translated from the Russian, revised and annotated by K.F. Roth and Anne Davenport, Reprint of the 1954 translation. Mineola, NY: Dover Publications Inc., 2004, pp. x+180 (cit. on pp. 257, 266).

    Google Scholar 

  30. H. Weyl. “Über die Gleichverteilung von Zahlen mod. Eins”. German. In: Math. Ann. 77 (1916), pp. 313–352 (cit. on p. 262).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ramaré .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramaré, O. (2022). Three Arithmetical Exponential Sums. In: Excursions in Multiplicative Number Theory. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-73169-4_26

Download citation

Publish with us

Policies and ethics