Skip to main content

Satellite and Tandem DNA Repeats in the Human Genome

  • Chapter
  • First Online:
Human Genome Structure, Function and Clinical Considerations
  • 1354 Accesses

Abstract

Satellite DNA comprises long arrays of tandem DNA repeats with moderate to long length, that account for the majority of heterochromatic sequences of the human genome, organizing centromeric, paracentromeric, and acrocentric regions of eukaryotic chromosomes, as well as the human Y chromosome. Tandemly repeated DNA is also found disperse in the human genome with shorter repeat motifs constituting mini- and microsatellite DNA, which are inherited in a Mendelian pattern. Their frequent length polymorphisms make them the most commonly employed DNA markers in forensic identification of individuals. In addition, microsatellite instability is a marker for detection of DNA repair deficiency in cancer. Expansions of the transcribed microsatellite repeat number in specific loci associate with rare chromosomal fragile sites and distinct neurological diseases, some of which show clinical anticipation according to further intergeneration repeat expansions. Clarification of molecular models of the genetic pathophysiology of these diseases has considerably advanced owing to the characterization of translation patterns of triplet repeat-containing mRNA and intracellular accumulation of these transcripts or unfolded proteins. The most recent technologies of massively parallel DNA sequencing generating longer reads more amenable to accurate mapping of repeats to specific chromosomal loci have been improving our understanding of the organization of tandemly repetitive DNA in the human genome and revealing novel potentially polymorphic sequences. This approach will likely add to the research in population genetics and association studies in medical genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miga KH, Koren S, Rhie A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–88.

    Article  CAS  Google Scholar 

  2. Allen EG, Sullivan AK, Marcus M, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142–52.

    Article  CAS  Google Scholar 

  3. Berry-Kravis E, Raspa M, Loggin-Hester L, et al. Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil. 2010;115(6):461–72.

    Article  Google Scholar 

  4. Bragg DC, Sharma N, Ozelius LJ. X-linked dystonia-parkinsonism: recente advances. Curr Op Neurol. 2019;32(4):604–9.

    Article  CAS  Google Scholar 

  5. Britten RJ, Kohne DE. Repeated sequences in DNA. Science. 1968;161(3841):529–40.

    Article  CAS  Google Scholar 

  6. Buijsen RAM, Visser JA, Kramer P, Severijnen EAWFM, et al. Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum Reprod. 2016;31(1):158–68.

    Article  CAS  Google Scholar 

  7. Favaro FP, Alvizi L, Zechi-Cleide RM, et al. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects. Am J Hum Genet. 2014;94:120–8.

    Article  CAS  Google Scholar 

  8. Garg P, Jadhav B, Rodriguez OL, et al. A survey of rare epigenetic variation in 23,116 human genomes identifies disease-relevant epivariations and novel CGG expansions. Am J Hum Genet. 2020;107:654–69.

    Article  CAS  Google Scholar 

  9. Greco CM, Berman RF, Martin RM, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain J Neurol. 2006;129(Pt. 1):243–55.

    Article  CAS  Google Scholar 

  10. Hoffman GE, Le WW, Entezam A, et al. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J Histochem Cytochem. 2012;60(6):439–56.

    Article  CAS  Google Scholar 

  11. Hughes JN, Thomas PQ. Molecular pathology of polyalanine expansion disorders: new perspectives from mouse models. In: Hatters D, Hannan A, editors. Tandem repeats in genes, proteins, and disease. Methods in molecular biology (methods and protocols), vol. 1017. Totowa, NJ: Humana Press; 2013.

    Google Scholar 

  12. Ishiura H, Tsuji S. Advances in repeat expansion disease and a new concept of repeat motif-phenotype correlation. Curr Opin Genet Dev. 2020;65:176–85.

    Article  CAS  Google Scholar 

  13. Kaufmann WE, Kidd SA, Andrews HF, et al. Autism spectrum disorder in fragile X syndrome: Cooccurring conditions and current treatment. Pediatrics. 2017;139(Suppl. 3):S194–206.

    Article  Google Scholar 

  14. LaCroix AJ, Stabley D, Sahraoui R, et al. GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome. Am J Hum Genet. 2019;104:35–44.

    Article  CAS  Google Scholar 

  15. Lee JE, Cooper TA. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. 2009;37(Pt. 6):1281–6.

    Article  CAS  Google Scholar 

  16. Lizardo DY, Kuang C, Hao S, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside. BBA Rev Cancer. 2020;1874:188447.

    CAS  Google Scholar 

  17. Lu C, Lin L, Tan H. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21(23):5039–47.

    Article  CAS  Google Scholar 

  18. Miga KH. Centromere studies in the era of ‘telomere-to-telomere’ genomics. Exp Cell Res. 2020;394(2):112127.

    Article  CAS  Google Scholar 

  19. Nancarrow JK, Holman K, Mangelsdorf M, et al. Molecular basis of p(CCG)n repeat instability at the FRA16A fragile site locus. Hum Mol Genet. 1995;4:367–72.

    Article  CAS  Google Scholar 

  20. Oh SY, He F, Krans A. RAN translation atCGGrepeats induces ubiquitin proteasome systemimpairment in models of fragile X-associated tremor ataxia syndrome. Hum Mol Genet. 2015;24(15):4317–26.

    Article  CAS  Google Scholar 

  21. Overby SJ, Cerro-Herreros E, Llamusi B, et al. RNA-mediated therapies in myotonic dystrophy. Drug Discov Today. 2018;23:2013–22.

    Article  CAS  Google Scholar 

  22. Pastor PDH, Du X, Fazal S, et al. Targeting the CACNA1A IRES as a treatment for spinocerebellar ataxia type 6. Cerebellum. 2018;17:72–7.

    Article  CAS  Google Scholar 

  23. Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105–23.

    Article  Google Scholar 

  24. Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis. 2019;130:104515.

    Article  CAS  Google Scholar 

  25. Sherman SL, Curnow EC, Easley CA, et al. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord. 2014;6(1):26.

    Article  Google Scholar 

  26. Sherman SL, Kidd SA, Riley C, Berry-Kravis E, et al. FORWARD: a registry and longitudinal clinical database to study fragile X syndrome. Pediatrics. 2017;139(Suppl. 3):S183–93.

    Article  Google Scholar 

  27. Smith CA, Gutmann L. Myotonic dystrophy type 1 management and therapeutics. Curr Treat Opt Neurol. 2016;18(12):52.

    Article  Google Scholar 

  28. Sulovari A, Li R, Audano PA, et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci U S A. 2019;116(46):23243–53.

    Article  CAS  Google Scholar 

  29. Vianna-Morgante AM, Costa SS, Pares AS, et al. FRAXA permutation associated with premature ovarian failure. Am J Med Genet. 1996;64(2):373–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Amaral Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haddad, L.A. (2021). Satellite and Tandem DNA Repeats in the Human Genome. In: Haddad, L.A. (eds) Human Genome Structure, Function and Clinical Considerations. Springer, Cham. https://doi.org/10.1007/978-3-030-73151-9_6

Download citation

Publish with us

Policies and ethics