Skip to main content

Nanocellulose-Based Materials for Heavy Metal Removal from Wastewater

  • Chapter
  • First Online:
Environmental Nanotechnology Volume 5

Abstract

Water contaminated with heavy metals kept increasing due to the high population and production of wastewater generation. Numerous techniques and materials have been manipulated in order to minimize the problems to treat the present of heavy metals in wastewaters. The advancement of nanocellulose has attracted noteworthy attention among researchers since it has shown its valuable potentials, including renewability, biodegradability, high strength and stiffness. The great properties make nanocellulose as promising based materials to be implemented in heavy metals removal. In general, nanocellulose can be extracted from different kinds of cellulose resources. In this chapter, the production, modification and application of three types of nanocellulose, which are cellulose nanocrystalline (CNC), cellulose nanofibrils (CNF) and bacteria cellulose (BC) have been explored. We highlighted on the research endeavor to improve the properties of the nanocellulose especially in terms of modification in order to meet the requirement for the materials to be applied in wastewater treatment. In detail, this paper discusses the application of nanocellulose under various kinds of modification to suit heavy metals removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd M, Mhd C, Chee Y, Hock C, Yong K, Nazri N, Nai-shang L (2017) Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydr Polym 173:91–99

    Article  CAS  Google Scholar 

  • Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7(3):362–371

    Article  CAS  Google Scholar 

  • Abdelwahab NA, Ammar NS, Ibrahim HS (2015) Graft copolymerization of cellulose acetate for removal and recovery of lead ions from wastewater. Int J Biol Macromol 79:913–922. https://doi.org/10.1016/j.ijbiomac.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Adel AM, El-gendy AA, Diab MA, Abou-zeid RE, El-zawawy WK, Dufresne A (2016) Microfibrillated cellulose from agricultural residues. Part I: Papermaking Application 93:161–174

    CAS  Google Scholar 

  • Afizah N, Ahmad I, Abdullah I, Hannan F, Mohamed F (2015) Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate. Carbohydr Polym 125:69–75

    Article  CAS  Google Scholar 

  • Afrin S, Karim Z (2017) Isolation and surface modification of Nanocellulose:necessity of enzymes over chemicals. Chem Bio Eng Rev 4:1–16

    Google Scholar 

  • Ahmed M, Azizi S, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomol Ther 6:612–626

    Google Scholar 

  • Ahn Y, Ha MG, Choi YJ (2013) Adsorptive behavior of acrylic acid-grafted bacterial cellulose to remove cadmium for a membrane-adsorbent hybrid process. Desalinat Water Treat 51:5074–5079

    Article  CAS  Google Scholar 

  • Ali A (2017) Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environ Nanotechnol Monit Manag 7:57–63

    Google Scholar 

  • Ali A, Saeed K (2016) Removal of Cr (VI) from aqueous medium using chemically modified banana peels as low-cost adsorbent. Desalin Water Treat 57(24):11242–11254

    Article  CAS  Google Scholar 

  • Andrade K, Silva P, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. Soc Biomat 98A:554–566

    CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Anirudhan TS, Shainy F (2015a) Effective removal of mercury ( II ) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J Colloid Interface Sci 456:22–31

    Article  CAS  PubMed  Google Scholar 

  • Anirudhan TS, Shainy F (2015b) Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium ( II ) from aqueous solutions. J Ind Eng Chem 32:157–166

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92(3):263–274

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Ahola S, Hirose Y, Josefsson P, Osterberg M, Lars W (2009) Nanoscale cellulose films with different crystallinities and mesostructures ; their surface properties and interaction with water. Langmuir 25(10):7675–7685

    Google Scholar 

  • Aulin C, Netrval J, WÃ¥gberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305

    Article  CAS  Google Scholar 

  • Aytekin AÖ, Fikrettin S (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Article  PubMed  CAS  Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals ( Cd , Pb , Zn , Ni , Cu and Cr ( III )) removal from water in Malaysia: post treatment by high quality limestone. Bio/Technology 99:1578–1583

    CAS  Google Scholar 

  • Azrina ZAZ, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM (2017) Spherical nanocrystalline cellulose ( NCC ) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120

    Article  CAS  Google Scholar 

  • Bagheri S, Julkapli NM, Mansouri N (2017) Nanocrystalline cellulose: green , multifunctional and sustainable nanomaterials. Handbook Composites Renewable Mat 7:523–556

    Article  CAS  Google Scholar 

  • Bai W, Holbery ÆJ, Li ÆK (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Barud HS, Ara AM, Santos DB, Meireles CS, Cerqueira DA, Assunc RMN (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69

    Article  CAS  Google Scholar 

  • Barud HGO, Barud S, Cavicchioli M, Silva T, Batista O, Junior DO, Ribeiro SJL (2015) Preparation and characterization of a bacterial cellulose / silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172

    Article  CAS  PubMed  Google Scholar 

  • Bledzki AK, Mamun AA, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341

    Article  CAS  PubMed  Google Scholar 

  • Braun B, Dorgan JR, Hollingsworth LO (2013) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147(1):13–21

    Article  CAS  Google Scholar 

  • Cavaco SA, Fernandes S, Quina MM, Ferreira M (2007) Removal of chromium from electroplating industry effluents by ion exchange resins. J Hazard Mater 144:634–638

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira DA, Filho GR, Meireles S (2007) Optimization of sugarcane bagasse cellulose acetylation. Carbohydr Polym 69:579–582

    Article  CAS  Google Scholar 

  • Chang C, Wang I, Hung K (2010) Preparation and characterization of nanocrystalline cellulose by acid hydrolysis of cotton linter. Taiwan J Sci 25:251–264

    CAS  Google Scholar 

  • Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals , microfibrillated and bacterial cellulose. Nanotechnology 7:56–80

    CAS  Google Scholar 

  • Chen C, Luo J, Qin W, Tong Z (2014) Elemental analysis, chemical composition, cellulose crystallinity, and FT-IR spectra of Toona sinensis wood. Monatshefte Fur Chemie 145(1):175–185

    Article  CAS  Google Scholar 

  • Chinga-carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC. Micron 44:331–338

    Article  CAS  PubMed  Google Scholar 

  • Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3/4):403–411

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  CAS  Google Scholar 

  • De H, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose , cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85(4):738–746

    Article  CAS  Google Scholar 

  • Dong X (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dong C, Zhang F, Pang Z, Yang G (2016a) Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. Carbohydr Polym 151:230–236

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Bortner MJ, Roman M (2016b) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crop Prod 93:76–87

    Article  CAS  Google Scholar 

  • Dufresne A (1999) Cellulose microfibrils from potato tuber cells: processing and characterization of starch – cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 4:1–33

    Article  CAS  Google Scholar 

  • Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules. https://doi.org/10.1021/bm400219u

  • Faradilla RHF, Lee G, Arns J, Roberts J, Martens P, Stenzel MH, Arcot J (2017) Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr Polym 174:1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Ferraz N, Carlsson DO, Hong J, Larsson R, Nyholm L, Strømme M, Mihranyan A (2012) Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J Royal Soc Interface 9:1943–1955

    Article  CAS  Google Scholar 

  • Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind Crop Prod 42:480–488

    Google Scholar 

  • Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny JM, Torre L (2012) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84(1):579–583

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  PubMed  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  • Guiza S (2017) Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol Eng 99:134–140

    Article  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. J Multidiscipl Eng Sci Stud 1(1):12–18

    Google Scholar 

  • Gupta VK, Pathania D, Agarwal S, Sharma S (2013) Removal of Cr(VI) onto Ficus carica biosorbent from water. Environ Sci Pollut Res 20(4):2632–2644

    Article  CAS  Google Scholar 

  • Gurgel LVA, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. Carbohydr Polym 77(1):142–149

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia L, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hamad WY, Hu TQ (2010) Nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Hasa T, Leiviska T (2016) Bisphosphonate nanocellulose in the removal of vanadium ( V ) from water. Cellulose 23:689–697

    Article  CAS  Google Scholar 

  • Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15

    Article  CAS  Google Scholar 

  • He X, Cheng L, Wang Y, Zhao J, Zhang W, Lu C (2014) Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr ( VI ) from water. Carbohydr Polym 111:683–687

    Article  CAS  PubMed  Google Scholar 

  • Hegazy ESA, Kamal H, Khalifa NA, Mahmoud GA (2001) Separation and extraction of some heavy and toxic metal ions from their wastes by grafted membranes. J Appl Polym Sci 81(4):849–860

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    Article  CAS  Google Scholar 

  • Henrique MA, Silvério HA, Flauzino Neto WP, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014a) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21(3):1471–1487

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Westholm LJ, Lou S, Sainio T, Sillanpää M (2014b) Adsorption of Ni2+, Cd2+, PO43− and NO3− from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chem Eng J 252:64–74

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M (2016a) Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr ( VI ) from aqueous solution. Chem Eng J 283:445–452

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016b) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Huntley CJ, Crews KD, Abdalla MA, Russell AE, Curry ML (2015) Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. Int J Chem Eng. https://doi.org/10.1155/2015/658163

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Kao N, Bhattacharya SN, Gupta R, Bhatt PK (2017) Effect of low pressure alkaline delignification process on the production of nanocrystalline cellulose from rice husk. J Taiwan Inst Chem Eng 80:820–834

    Article  CAS  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431

    Article  CAS  Google Scholar 

  • Iwamoto I, Nakagaito AN, Hano N (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A–Mat Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghauri M (2017) Cellulose-based materials for the removal of heavy metals from wastewater – an overview. ChemBioEng 4:1–18

    Google Scholar 

  • Jeon S, Yoo Y, Park J, Kim H, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14(12):1621–1624

    Article  Google Scholar 

  • Ji F, Li C, Tang B, Xu J, Lu G, Liu P (2012) Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem Eng J 209:325–333

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99

    Article  CAS  Google Scholar 

  • Jonas R, Farahc LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Jozala AF, Lencastre-novaes LC, De Lopes AM, Santos-ebinuma VDC, Mazzola PG, Pessoa A (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072

    Article  CAS  PubMed  Google Scholar 

  • Kaith BS, Dhiman J, Kaur Bhatia J (2015) Preparation and application of grafted Holarrhena antidycentrica fiber as cation exchanger for adsorption of dye from aqueous solution. J Environ Chem Eng 3(2):1038–1046

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polymer Sci 292:5–31

    Article  CAS  Google Scholar 

  • Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crop Prod 87:287–296

    Article  CAS  Google Scholar 

  • Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334

    Article  CAS  Google Scholar 

  • Kardam A, Rohit K (2014) Nanocellulose fibers for biosorption of cadmium , nickel , and lead ions from aqueous solution. Clean Techn Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I (2012) Effects of hydrolysis conditions on the morphology , crystallinity , and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Res 346(1):76–85

    Article  CAS  Google Scholar 

  • Keshk SMAS (2014) Bacterial cellulose porduction and its industrial applications. J Bioprocess Biotech 4(2):1–10

    Article  CAS  Google Scholar 

  • Khalil HPSA, Davoudpour Y, Islam N, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  PubMed  CAS  Google Scholar 

  • Khorramfar S, Mahmoodi NM, Arami M, Gharanjig K (2010) Equilibrium and kinetic studies of the cationic dye removal capability of a novel biosorbent Tamarindus indica from textile wastewater. Color Technol 126(5):261–268

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Dorris A (2011) Reviews nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska A, Gonc M (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kumar YP, King P, Prasad VSRK (2006) Zinc biosorption on Tectona grandis L.f. leaves biomass: equilibrium and kinetic studies. Chem Eng J 124(1–3):63–70

    Article  CAS  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mat Phys Chem 2(1):1–8

    Google Scholar 

  • Kumar R, Sharma RK, Singh AP (2017) Cellulose based grafted biosorbents - journey from lignocellulose biomass to toxic metal ions sorption applications - a review. J Mol Liq 232:62–93

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Google Scholar 

  • Lee S, Mohan DJ, Kang I, Doh G, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polymers 10(1):77–82

    Article  CAS  Google Scholar 

  • Lee K, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis , bioprocessing , and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang Y, Peng J, Wu H, Li J, Zhai M (2012a) Adsorption of Cr(VI) using cellulose microsphere-based adsorbent prepared by radiation-induced grafting. Radiat Phys Chem 81(8):967–970

    Article  CAS  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J (2012b) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):609–1613

    Article  Google Scholar 

  • Lim HK, Teng TT, Ibrahim MH, Ahmad A, Chee HT (2012) Adsorption and removal of zinc (ii) from aqueous solution using powdered fish bones. APCBEE Proc 1:96–102

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83(4):1834–1842

    Article  CAS  Google Scholar 

  • Lis N, Rodriguez G, De Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  • Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101(7):2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Ferrer P, Boˇ M, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+ , Cu 2+ and Fe 3+ from industrial effluents. J Hazard Mater 294:177–185

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Oksman K, Mathew AP (2016) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Xie W, Deng H (2017) Extraction , isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohydr Polym 173:353–359

    Article  CAS  PubMed  Google Scholar 

  • Livazovic S, Li Z, Behzad AR, Peinemann KV, Nunes SP (2015) Cellulose multilayer membranes manufacture with ionic liquid. J Membr Sci 490:282–293

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymers 49(5):1285–1296

    Article  CAS  Google Scholar 

  • Lu M, Guan XH, Xu XH, Wei DZ (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256

    Article  CAS  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282

    Article  CAS  Google Scholar 

  • Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207

    Article  CAS  PubMed  Google Scholar 

  • Madivoli ES, Kareru PG, Gachanja AN, Mugo S, Murigi MK (2016) Adsorption of selected heavy metals on modified nano cellulose. Int Res J Pure Appl Chem 12(3):1–9

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24(3):1171–1197

    Article  CAS  Google Scholar 

  • Mahmoud AM, Ibrahim FA, Shaban SA, Youssef NA (2015) Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt J Pet 24(1):27–35

    Article  Google Scholar 

  • Maity J, Ray SK (2017) Removal of Cu (II) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels. Int J Biol Macromol 97:238–248

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  • Mascheroni E, Rampazzo R, Aldo M, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate , to be used as coating on flexible food-packaging materials. Cellulose 23(1):779–793

    Article  CAS  Google Scholar 

  • Mathew B, Lopes A, Ferreira S, Souza D, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Mathew B, Lopes A, Ferreira S, Souza D, Maria L, Costa M, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798

    Article  CAS  Google Scholar 

  • Mesquita P, De Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  PubMed  CAS  Google Scholar 

  • Minelli M, Baschetti MG (2017) Water sorption in microfibrillated cellulose ( MFC ): the effect of temperature and pretreatment. Carbohydr Polym 174:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal A, Teotia M, Soni RK, Mittal J (2016) Applications of egg shell and egg shell membrane as adsorbents: a review. J Mol Liq 223:376–387

    Article  CAS  Google Scholar 

  • Mohamed MA, Salleh WNW, Jaafar J, Ismail AF, Abd. Mutalib M, Jamil SM (2015) Feasibility of recycled newspaper as cellulose source for regenerated cellulose membrane fabrication. J Appl Polym Sci 132(43):1–10

    Article  CAS  Google Scholar 

  • Mohamed MA, Salleh WNW, Jaafar J, Ismail AF (2016a) The utilization of recycled newspaper in the production of cellulose microfiber. Adv Mater Res 1133:644–648

    Article  Google Scholar 

  • Mohamed MA, Salleh WNW, Jaafar J, Ismail AF, Abd Mutalib M, Mohamad AB, Mohd Hir ZA (2016b) Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr Polym 157:1892–1902

    Article  PubMed  CAS  Google Scholar 

  • Mondal S (2017) Preparation , properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316

    Article  CAS  PubMed  Google Scholar 

  • Montplaisir D, Lepetit A, Drolet R (2017) Alkylation of microfibrillated cellulose-A green and efficient method for use in fiber-reinforced composites. Polymers 126:48–55

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mora JI (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  • Morais E, De Jessika T, Bruna K, Teodoro R, Carolina A, Manoel J, Mattoso C (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66

    Article  CAS  Google Scholar 

  • Morais JPS, Rosa MDF, de Souza FMDSM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    Article  CAS  PubMed  Google Scholar 

  • Mututuvari TM, Tran CD (2014) Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether. J Hazard Mater 264:449–459

    Article  CAS  PubMed  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based. Appl Physic A Mat Sci Proces 552:547–552

    Article  CAS  Google Scholar 

  • Ndi Nsami J, Ketcha Mbadcam J (2013) The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue. J Chem 2013:1–7

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  • Nogi BM, Iwamoto S, Nakagaito AN (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nyoo J, Ismadji S, Ju Y (2017) Environmental nanotechnology , monitoring & management nanocellulose based biosorbents for wastewater treatment: study of isotherm , kinetic , thermodynamic and reusability. Environ Nanotechnol Monitoring Manag 8(43):134–149

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  PubMed  CAS  Google Scholar 

  • OciÅ„ski D, Jacukowicz-Sobala I, Mazur P, Raczyk J, KocioÅ‚ek-Balawejder E (2016) Water treatment residuals containing iron and manganese oxides for arsenic removal from water – characterization of physicochemical properties and adsorption studies. Chem Eng J 294:210–221

    Google Scholar 

  • Omidvar Borna M, Pirsaheb M, Vosoughi Niri M, Khosravi Mashizie R, Kakavandi B, Zare MR, Asadi A (2016) Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent. J Taiwan Inst Chem Eng 68:80–89

    Article  CAS  Google Scholar 

  • Paulo J, Morais S, Freitas M, De M, Souza M, De Dias L, Ribeiro A (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    Article  CAS  Google Scholar 

  • Pavlovic V (2016) Arsenic removal by magnetite-loaded amino modified nano / microcellulose adsorbents: effect of functionalization and media size. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.08.006

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Pértile RAN, Moreira S, Gil RM, Correia A, Guãrdao L (2012) Bacterial cellulose: Long-term biocompatibility studies. J Biomat Sci 23:1339–1354

    Article  CAS  Google Scholar 

  • Rahbar K, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crop Prod 93:203–211

    Article  CAS  Google Scholar 

  • Raji C, Anirudhan TS (1998) Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Res 32(12):3772–3780

    Article  CAS  Google Scholar 

  • Raouf A, Raheim A (2017) Removal of heavy metals from industrial waste water by biomass-based materials: a review. J Pollution Effects Control 5(1):1–13

    Google Scholar 

  • Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomat Nanobiotechnol 4:165–188

    Article  CAS  Google Scholar 

  • Riaz T, Ahmad A, Saleemi S, Adrees M, Jamshed F, Hai AM, Jamil T (2016) Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal. Carbohydr Polym 153:582–591

    Article  CAS  PubMed  Google Scholar 

  • Rosli NA, Ahmad I, Abdullah I, Anuar FH (2014) Graft copolymerization of methyl methacrylate onto agave cellulose. Malaysian J Analyt Sci 18(2):398–404

    Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254(23–24):2959–2972

    Article  CAS  Google Scholar 

  • Saiful Z, Wessling M (2006) Enzyme capturing and concentration with mixed matrix membrane adsorbers. J Membr Sci 280(1–2):406–417

    Article  CAS  Google Scholar 

  • Samir A, Alloin F, Paillet M, Dufresne A (2004a) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Samir A, Alloin F, Sanchez J, Dufresne A (2004b) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844

    Article  CAS  Google Scholar 

  • Santos RM, Flauzino Neto WP, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crop Prod 50:707–714

    Article  CAS  Google Scholar 

  • Sehaqui H, Perez U (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    Article  CAS  Google Scholar 

  • Shaheen TI, Emam HE (2017) Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int J Biol Macromol 107:1599–1606

    Article  PubMed  CAS  Google Scholar 

  • Shariful MI, Sharif S, Lee JJL, Habiba U, Ang BC, Amalina MA (2017) Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr Polym 157:57–64

    Article  CAS  PubMed  Google Scholar 

  • Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88(2):772–779

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Hamad WY, Maclachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 50:10991–10995

    Article  CAS  Google Scholar 

  • Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Article  CAS  Google Scholar 

  • Singh K, Sinha TJM, Srivastava S (2015) Functionalized nanocrystalline cellulose: smart biosorbent for decontamination of arsenic. Int J Miner Process 139:51–63

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  PubMed  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  • Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A (2014) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 106:326–334

    Article  CAS  PubMed  Google Scholar 

  • Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589

    Article  CAS  PubMed  Google Scholar 

  • Spence KL, Venditti RA, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Spinella S, Maiorana A, Qian Q, Dawson NJ, Mccallum SA, Ganesh M, Gross RA (2015) Concurrent cellulose hydrolysis and esterification to prepare surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain Chem Eng 4(3):1538–1550

    Article  CAS  Google Scholar 

  • Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63:861–869

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Jinga SI, Mihalache N, Botez A, Matei C, Ionita V (2016) Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites. Int J Biol Macromol 91:1062–1072

    Article  CAS  PubMed  Google Scholar 

  • Su H, Chong Y, Wang J, Long D, Qiao W, Ling L (2018) Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal. J Colloid Interface Sci 510:77–85

    Article  CAS  PubMed  Google Scholar 

  • Suhas GVK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 24:175–183

    Article  CAS  Google Scholar 

  • Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki J (2015) Lead adsorption with sulfonated wheat pulp nanocelluloses. J Water Process Eng 5:136–142

    Article  Google Scholar 

  • Syverud K, Stenius ÆP (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Joseph S, Koshy P, Thomas S (2012) The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interfaces 12(6):37–41

    Google Scholar 

  • Vandamme EJ, Baets S, De Vanbaelen A, Joris K, Wulf PD (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99

    Article  CAS  Google Scholar 

  • Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha PN (2016) Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452

    Article  CAS  PubMed  Google Scholar 

  • Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material ? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995

    Google Scholar 

  • Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99(10):3935–3948

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493

    Article  CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  CAS  Google Scholar 

  • Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862

    Article  CAS  Google Scholar 

  • Wulandari WT, Rochliadi A, Arcana M (2016) Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Mat Sci Eng:107. https://doi.org/10.1088/1757-899X/107/1/012045

  • Xiong R, Zhang X, Tian D, Zhou Z, Lu C (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19:1189–1198

    Article  CAS  Google Scholar 

  • Xu Q, Wang Y, Jin L, Wang Y, Qin M (2017) Adsorption of Cu ( II ), Pb ( II ) and Cr ( VI ) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J Hazard Mater 339:91–99

    Article  CAS  PubMed  Google Scholar 

  • Yakout AA, El-Sokkary RH, Shreadah MA, Abdel Hamid OG (2016) Removal of Cd(II) and Pb(II) from wastewater by using triethylenetetramine functionalized grafted cellulose acetate-manganese dioxide composite. Carbohydr Polym 148:406–414

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Wang J, Lei M, Xie G, Zeng G, Luo S (2010) Biosorption of zinc(II) from aqueous solution by dried activated sludge. J Environ Sci 22(5):675–680

    Article  CAS  Google Scholar 

  • Yu LJ, Shukla SS, Dorris KL, Shukla A, Margrave JL (2003) Adsorption of chromium from aqueous solutions by maple sawdust. J Hazard Mater 100(1–3):53–63

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943

    Article  CAS  Google Scholar 

  • Yu G, Teng Y, Lai W, Yin C (2016a) The preparation and study of cellulose carbamates and their regenerated membranes. Int J Biol Macromol 93:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Liu S, Xu M, Peng J, Li J, Zhai M (2016b) Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal. Radiat Phys Chem 125:94–101

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre / polypropylene composite materials . Part I . Development and investigation of surface treatments. Compos Part A 33:1083–1093

    Article  Google Scholar 

  • Zhang LN, Ruan D, Zhou JP (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution. Ind Eng Chem Res 40(25):5923–5928

    Article  CAS  Google Scholar 

  • Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renewable Mat 1(3):195–211

    Article  Google Scholar 

  • Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    Article  CAS  Google Scholar 

  • Zhao M, Xu Y, Zhang C, Rong H, Zeng G (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100:6509–6518

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90(1):644–649

    Article  CAS  PubMed  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial aids from the Ministry of Higher Education and Universiti Teknologi Malaysia under Higher Institution Centre of Excellence Scheme (Project Number: R.J090301.7846.4 J186) and Research University Grant Scheme (Project Number: Q.J130000.2546.18H97). The authors would also like to acknowledge technical and management support from Research Management Centre (RMC), Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan Norharyati Wan Salleh or Ahmad Fauzi Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awang, N.A., Salleh, W.N.W., Yusof, N., Karim, Z.A., Ismail, A.F. (2021). Nanocellulose-Based Materials for Heavy Metal Removal from Wastewater. In: Dasgupta, N., Ranjan, S., Lichtfouse, E., Mishra, B.N. (eds) Environmental Nanotechnology Volume 5. Environmental Chemistry for a Sustainable World, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-73010-9_1

Download citation

Publish with us

Policies and ethics