Skip to main content

State-Of-The-Art Overview of CO2 Conversions

  • Chapter
  • First Online:
Carbon Dioxide Utilization to Sustainable Energy and Fuels

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Due to the environmental problems about climate change and global warming, carbon dioxide is transformed and valorized from an emission to a raw material of many chemical production processes. This contributes transforming the linear economy into a circular one, considering the principles of reduction, reuse, recovery, recycle. However, the potential carbon dioxide uptake is lower compared to the worldwide CO2 emissions, estimated of 37 Gt actually. In the literature, many utilization options are suggested and are evaluated according to the 3E performance criteria (engineering–economic–environmental), including nine key indicators. An economic estimation and an analysis about the market size of the main carbon dioxide-based products are here suggested. Moreover, with particular attention, in this work, different routes for carbon dioxide utilization are reviewed: chemicals, fuels, concrete building materials, horticulture and microalgae production as well as mineral carbonation, oil and methane recovery and some direct uses. Cycling, closed and open pathways can be realized. Carbon dioxide utilization pathways ensuring a promising development in the next years are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AHDB Horticulture (2019) Available at: https://horticulture.ahdb.org.uk/sources-co2

  • Abashar MEE (2004) Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors. Int J Hydrogen Energy 29(8):799–808

    Article  CAS  Google Scholar 

  • Al-Kalbani H, Xuan J, García S, Wang H (2016) Comparative energetic assessment of methanol production from CO2: chemical versus electrochemical process. Appl Energy 165:1–13

    Article  CAS  Google Scholar 

  • Al-musleh EI, Mallapragada DS, Agrawal R (2014) Continuous power supply from a baseload renewable power plant. Appl Energy 122:83–93

    Article  Google Scholar 

  • AlMazrouei M, Asad O, Zahra MA, Mezher T, Tsai IT (2017) CO2-enhanced oil recovery system optimization for contract-based versus integrated operations. Energy Procedia 105:4357–4362

    Article  CAS  Google Scholar 

  • Alberici S et al (2017) Assessing the potential of CO2 utilization in the UK. Report Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/799293/SISUK17099AssessingCO2_utilisationUK_ReportFinal_260517v2__1_.pdf

  • Algoufi YT, Kabir G, Hameed BH (2017) Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. J Taiwan Inst Chem Eng 70:179–187

    Article  CAS  Google Scholar 

  • Ampelli C, Perathoner S, Centi G (2015) CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Phil Trans R Soc A 373:20140177

    Article  PubMed  Google Scholar 

  • Ampomah W, Balch RS, Grigg RB, McPherson B, Will RA, Lee SY, Dai Z, Pan F (2016) Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. Greenh Gases Sci Technol 7:128–142

    Article  Google Scholar 

  • Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Yasar A, Rasool K, Nazir A, Raja MUF, Rehan M, Aghbashlo M, Tabatabaei M, Nizami AS (2020) CO2 utilization: Turning greenhouse gas into fuels and valuable products. J Environ Manag 260:110059

    Article  CAS  Google Scholar 

  • Artz J, Muller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118:434–504

    Article  CAS  PubMed  Google Scholar 

  • Atsonios K, Panopoulos KD, Kakaras E (2016) Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. Int J Hydrogen Energy 41:2202–2214

    Article  CAS  Google Scholar 

  • Azzolina NA, Peck WD, Hamling JA, Gorecki CD, Ayash SC, Doll TE et al (2016) How green is my oil? A detailed look at greenhouse gas accounting for CO2-enhanced oil recovery (CO2-EOR) sites. Int J Greenhouse Gas Control 51:369–379

    Article  CAS  Google Scholar 

  • Bailera M, Lisbona P, Romeo LM, Espatolero S (2017) Power-to-gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renew Sustain Energy Rev 69:292–312

    Article  CAS  Google Scholar 

  • Balan OM, Buga MR, Bildea CS (2016) Conceptual design, performance and economic evaluation of carbon dioxide methanation plant. Rev Chim 67(11):2237–2242

    CAS  Google Scholar 

  • Baojian Z, Chisun P, Caijun S (2013) CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cement Concr Compos 42:1–8

    Article  Google Scholar 

  • Barbieri G, Marigliano G, Golemme G, Drioli E (2002) Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor. Chem Eng J 85:53–59

    Article  CAS  Google Scholar 

  • Bassani A, Pirola C, Maggio E, Pettinau A, Frau C, Bozzano G, Pierucci S, Ranzi E, Manenti F (2016) Acid Gas to Syngas (AG2STM) technology applied to solid fuel gasification: cutting H2S and CO2 emissions by improving syngas production. Appl Energy 184:1284–1291

    Article  CAS  Google Scholar 

  • Bassano C, Deiana P, Lietti L, Visconti CG (2019) P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel 253:1071–1079

    Article  CAS  Google Scholar 

  • Bazzanella A, Krämer D (2019) Technologies for sustainability and climate protection—chemical processes and use of CO2. Available at https://dechema.de/en/energyandclimate/_/CO2_Buch_engl.pdf

  • Bellotti D, Rivarolo M, Magistri L, Massardo AF (2017) Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. J. CO2 Util 21:132–138

    Article  CAS  Google Scholar 

  • Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke HJ (2014) Methanol: the basic chemical and energy feedstock of the future. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Bhola V, Swalaha F, Kumar RR, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol 11:2103–2118

    Article  CAS  Google Scholar 

  • Blanco H, Faaij A (2018) A review at the role of storage in energy systems with a focus on Power-to-Gas and long-term storage. Renew Sustain Energy Rev 81:1049–1086

    Article  Google Scholar 

  • Blanco H, Nijs W, Ruf J, Faaij A (2018) Potential of power-to-methane in the EU energy transition to a low carbon system using cost optimization. Appl Energy 232:323–340

    Article  CAS  Google Scholar 

  • Bozzano G, Manenti F (2016) Efficient methanol synthesis: perspectives, technologies and optimization strategies. Prog Energy Combust Sci 56:71–105

    Article  Google Scholar 

  • Brunner C, Thomas A (2014) Arbeitspaket 6: Gasnetzanalysen und Wirtschaftlichkeitsbetrachtung. Wasser-Praxis 65:59–65

    Google Scholar 

  • Buchholz OS, van der Ham AGJ, Veneman R, Brilman DWF, Kersten SRA (2014) Power-to-gas: storing surplus electrical energy. A Des Study, Energy Procedia 63:7993–8009

    Article  Google Scholar 

  • Bui M et al (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176

    Article  CAS  Google Scholar 

  • Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via Power-to-Gas and power-to-liquids: a review. Renew Sustain Energy Rev 82:2440–2454

    Article  CAS  Google Scholar 

  • Catarina Faria A, Miguel CV, Madeira LM (2018) Thermodynamic analysis of the CO2 methanation reaction with in situ water removal for biogas upgrading. J CO2 Util 26:271–280

    Article  CAS  Google Scholar 

  • Chalabi ZS, Biro A, Bailey BJ, Aikman DP, Cockshull KE (2002) Optimal control strategies for carbon dioxide enrichment in greenhouse tomato cropsdpart 1: using pure carbon dioxide. Biosyst Eng 81:421

    Article  Google Scholar 

  • Chang R, Choi D, Kim MH, Park Y (2017b) Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization. ACS Sustain Chem Eng 5:1659–1667

    Article  CAS  Google Scholar 

  • Chang R, Kim S, Lee S, Choi S, Kim M, Park Y (2017a) Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Front Energy Res 5(17):1–12

    Google Scholar 

  • Chauvy R, Meunier N, Thomas D, De Weireld G (2019) Selecting emerging CO2 utilization products for short- to mid-term deployment. Appl Energy 236:662–680

    Article  CAS  Google Scholar 

  • Chen B, Pawar RJ (2019) Capacity assessment and co-optimization of CO2 storage and enhanced oil recovery in residual oil zones. J Petrol Sci Eng 182:106342

    Article  CAS  Google Scholar 

  • Chen H, Wang Z, Chen X, Chen X, Wang L (2017) Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J CO2 Util 19:112–119

    Article  CAS  Google Scholar 

  • Cho S, Kim S, Kim J (2019) Life-cycle energy, cost, and CO2 emission of CO2-enhanced coalbed methane (ECBM) recovery framework. J Nat Gas Sci Eng 70:102953

    Article  CAS  Google Scholar 

  • Choia JH, Woob HC, Suha DJ (2014) Pyrolysis of seaweeds for bio-oil and bio-char production. Chem Eng Trans 37:121–126

    Google Scholar 

  • Chwoła T, Spietz T, Więcław-Solny L, Tatarczuk A, Krótki A, Dobra S, Wilk A, Tchórz J, Stec M, Zde J (2020) Pilot plant initial results for the methanation process using CO2 from amine scrubbing at the Łaziska power plant in Poland. Fuel 263:116804

    Article  Google Scholar 

  • Colella C, Cejka J, Van Bekkum H, Corma A, Schueth F (2007) Introduction to zeolite science and practice. Elsevier, Amsterdam, pp 999–1035

    Book  Google Scholar 

  • Cooney G, Littlefield J, Marriott J, Skone TJ (2015) Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis. Environ Sci Technol 49(12):7491–7500

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Viswanathan H, Xiao T, Middleton R, Pan F, Ampomah W, Yang C, Zhoud Y, Jia W, Lee SY, Cather M, Balch R, McPherson B (2017) CO2 Sequestration and enhanced oil recovery at depleted oil/gas reservoirs. Energy Procedia 114:6957–6967

    Article  CAS  Google Scholar 

  • Davidson CL, Dahowski RT, Dooley JJ (2011) A quantitative comparison of the cost of employing EOR-coupled CCS supplemented with secondary DSF storage for two large CO2 point sources. Energy Procedia 4:2361–2368

    Article  Google Scholar 

  • Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155(1):B42–B44

    Article  CAS  Google Scholar 

  • Dickinson RR, Battye DL, Linton VM, Ashman PJ, Nathan GJ (2010) Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int J Hydrogen Energy 35(3):1321–1329

    Article  CAS  Google Scholar 

  • Dindi A, Quang DV, Vega LF, Nashef E, Abu-Zahr MRM (2019) Applications of fly ash for CO2 capture, utilization, and storage. J CO2 Util 29:82–102

    Article  CAS  Google Scholar 

  • Dion LM, Lefsrud M, Orsat V (2011) Review of CO2 recovery methods from the exhaust gas of biomass heating systems for safe enrichment in greenhouses. Biomass Bioenerg 35:3422–3432

    Article  CAS  Google Scholar 

  • Dong J, Gruda N, Li X, Tang Y, Zhang P, Duan Z (2020) Sustainable vegetable production under changing climate: the impact of elevated CO2 on yield of vegetables and the interactions with environments-a review. J Clean Prod 253:119920

    Article  CAS  Google Scholar 

  • Dou J, Zhang R, Hao X, Bao Z, Wu T, Wang B, Yu F (2019) Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Appl Catal B 254(2019):612–623

    Article  CAS  Google Scholar 

  • Edwards DR (2008) Towards a plant-based method of guiding CO2 enrichment in greenhouse tomato. Plant Science Department. University of British Columbia, Vancouver

    Google Scholar 

  • El-Hassan H, Shao YX (2014) Carbon storage through concrete block carbonation curing. J Clean Energy Technol 2(3):287–291

    Article  CAS  Google Scholar 

  • Eloneva S, Teir S, Salminen J, Fogelholm C-J, Zevenhoven R (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33:1461–1467

    Article  CAS  Google Scholar 

  • Fana Y, Deng C, Zhanga X, Lid F, Wanga X, Qiao L (2018) Numerical study of CO2-enhanced coalbed methane recovery. Int J Greenhousess Gas Control 76:12–23

    Article  Google Scholar 

  • Farajzadeha R, Eftekhari AA, Dafnomilisa G, Lake W, Bruining J (2020) On the sustainability of CO2 storage through CO2—enhanced oil recovery. Appl Energy 261:114467

    Article  Google Scholar 

  • Farsi M, Jahanmiri A (2011) Application of water vapor and hydrogen perm-selective membranes in an industrial fixed-bed reactor for large scale methanol production. Chem Eng Res Des 89(12):2728–2735

    Article  CAS  Google Scholar 

  • Feng N, Peng G (2005) Applications of natural zeolite to construction and building materials in China. Constr Build Mater 19(8):579–584

    Article  Google Scholar 

  • Fernández-Dacosta C, Van Der Spek M, Hung CR, Oregionni GD, Skagestad R, Parihar P et al (2017) Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis. J CO2 Util 21:405–422

    Google Scholar 

  • Fidalgo F, Domínguez A, Pis JJ, Menéndez JA (2008) Microwave-assisted dry reforming of methane. Int J Hydrogen Energy 33(16):4337–4344

    Article  CAS  Google Scholar 

  • Gai S, Yub J, Yuc H, Eagle J, Zhao H, Lucas J, Doroodchi E, Moghtaderi B (2016) Process simulation of a near-zero-carbon-emission power plant using CO2 as the renewable energy storage medium. Int J Greenh Gas Control 47:240–249

    Article  CAS  Google Scholar 

  • Galan I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186

    Article  CAS  PubMed  Google Scholar 

  • Gallucci F, Paturzo L, Basile A (2004) An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor. Chem Eng Process 43:1029–1036

    Article  CAS  Google Scholar 

  • Gassner M, Maréchal M (2012) Thermo-economic optimisation of the polygeneration of synthetic natural gas (SNG), power and heat from lignocellulosic biomass by gasification and methanation. Energy Environ Sci 5(2):5768

    Article  CAS  Google Scholar 

  • Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  CAS  PubMed  Google Scholar 

  • Girdon P, Gloger C, Gonzalez D, Henneqiun J, Krinninger K, de Lorenzi L, Wilyman P (2006) Minimum Specifications for Food Gas Applications; European Industrial Gases Association AISBL, Brussels, Belgium

    Google Scholar 

  • Global CCS Institute (2011) Accelerating the uptake of CCS: Industrial Use of Captured Carbon Dioxide; Parsons Brickerhoff: New York, NY, USA

    Google Scholar 

  • Gokon N et al (2011) Kinetics of methane reforming over Ru/γ-Al2O3-catalyzed metallic foam at 650–900 °C for solar receiver-absorbers. Int J Hydrogen Energy 36(1):203–215

    Article  CAS  Google Scholar 

  • Gorre J, Ruossa F, Karjunenb H, Schaffertc J, Tynjälä T (2020) Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. Appl Energy 257:113967

    Article  CAS  Google Scholar 

  • Grignard B, Gennen S, Jerome C, Kleij AW, Detrembleur C (2019) Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem Soc Rev 48:4466–4514

    Article  CAS  PubMed  Google Scholar 

  • Grondin J, Aupetit C, Tassaing T (2019) a rational investigation of the lewis acid-promoted coupling of carbon dioxide with cyclohexene oxide: towards CO2-sourced polycyclohexene carbonate under solvent- and cocatalyst-free conditions. J Carbon Res 5:39

    Article  CAS  Google Scholar 

  • Guan C, Liu S, Li C, Wang Y, Zhao Y (2018) The temperature effect on the methane and CO2 adsorption capacities of Illinois coal. Fuel 211:241–250

    Article  CAS  Google Scholar 

  • Haid J, Koss U (2001) Lurgi’s mega-methanol technology opens the door for a new era in down-stream applications. Stud Surf Sci Catal 136:399–404

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Leite GB, Abdelaziz AEM (2014) Exploring the diversity of microalgal physiology for applications in waste water treatment and biofuel production. Algal Res 6:111–118

    Article  Google Scholar 

  • Harp G, Harp KC, Bergins TG, Buddenberg T, Drach I, Koytsoumpa EI, Sigurbjornsson O (2015) Application of power to methanol technology to integrated steelworks for profitability, conversion efficiency, and CO2 reduction. Available at: http://www.mefco2.eu/pdf/2.%20Application%20of%20Power%20to%20Methanol%20Technology%20to%20Integrated%20Steelworks%20for%20Profitability,%20Conversion%20Efficiency,%20and%20CO2.pdf

  • Hauri F (2006) Natural zeolite from southern Germany: applications in concrete. In: Bowman RS, Delap SE (Eds) Proceedings of 7th international conference on the occurrence, properties, and utilization of natural zeolites. Socorro, pp 130–131

    Google Scholar 

  • He Z, Jia Z, Wang S, Mahoutian M, Shao Y (2019) Maximizing CO2 sequestration in cement-bonded fiberboards through carbonation curing. Constr Build Mater 213:51–60

    Article  CAS  Google Scholar 

  • Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Dowell NM, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–97

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Xie K (2019) Enhancing the performance of high-temperature H2O/CO2 co-electrolysis process on the solid oxide Sr2Fe1.6Mo0.5O6-d-SDC/ LSGM/Sr2Fe1.5Mo0.5O6-d-SDC cell. Electrochim Acta 301:63–68

    Article  CAS  Google Scholar 

  • Hu GZ, He WR, Sun M (2018) Enhancing coal seam gas using liquid CO2 phase-transition blasting with crossmeasure borehole. J Nat Gas Sci Eng 60:164–173

    Article  CAS  Google Scholar 

  • Iaquaniello G, Centi G, Salladini A, Palo E, Perathoner S, Spadaccini L (2017) Wasteto-methanol: process and economics assessment. Bioresour Technol 243:611–619

    Article  CAS  PubMed  Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113

    Article  Google Scholar 

  • Jaramillo P, Griffin WM, McCoy ST (2009) Life cycle inventory of CO2 in an enhanced oil recovery system

    Google Scholar 

  • Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis. Renew Sustain Energy Rev 85:46–68

    Article  CAS  Google Scholar 

  • Jiang J, Rui Z, Hazlett R, Lu J (2019) An integrated technical-economic model for evaluating CO2 enhanced oil recovery development. Appl Energy 247:190–211

    Article  CAS  Google Scholar 

  • Kamali F, Cinar Y (2014) Co-Optimizing Enhanced Oil Recovery and CO2 Storage by Simultaneous Water and CO2 Injection. Energy Explor Exploit 32(2):281–300

    Article  CAS  Google Scholar 

  • Kemp AG, Kasim S (2013) The economics of CO2-EOR cluster developments in the UK Central North Sea. Energy Policy 62:1344–1355

    Article  Google Scholar 

  • Khan MT, Saud KR, Irfan M, KA, Ibrahim (2018) Curing of Concrete by Carbon Dioxide. Int Res J Eng Technol 5(4):4410–4414

    Google Scholar 

  • Kim SH, Jeong S, Chung H, Nam K (2020) Mechanism for alkaline leachate reduction through calcium carbonate precipitation on basic oxygen furnace slag by different carbonate sources: application of NaHCO3 and CO2 gas. Waste Manage 103:122–127

    Article  CAS  Google Scholar 

  • King C, Coleman S, Cohen S, Gülen G (2011) The economics of an integrated CO2 capture and sequestration system: Texas Gulf Coast case study. Energy Procedia 4:2588–2595

    Article  Google Scholar 

  • Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269

    Article  CAS  Google Scholar 

  • Klaring HP, Hauschild C, Heißner A, Bar-Yosef B (2007) Modelbased control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agr Forest Meteor 143:208

    Article  Google Scholar 

  • Klauber C, Gräfe M (2009) Power, G. Review of Bauxite Residue “Re-use” Options. CSIRO Document DMR-3609, 2009. Available online: http://www.asiapacificpartnership.org/pdf/Aluminium/6th_aluminium_tf_meeting/Review_of_Bauxite_Residue_Re-use_Options_Aug09_sec.pdf

  • Kleiminger L, Li T, Li K, Kelsall GH (2015) Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers. Electrochim Acta 179:565–577

    Article  CAS  Google Scholar 

  • Koottungal L (2014) 2014 worldwide EOR survey. Oil Gas J (April)

    Google Scholar 

  • Kumar P, With P, Srivastava VC, Gläser R, Mishra IM (2017) Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study. J Alloy Compd 696:718

    Article  CAS  Google Scholar 

  • Kwak DH, Kim JK (2017) Techno-economic evaluation of CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply. Int J Greenhouse Gas Control 58:169–184

    Article  CAS  Google Scholar 

  • Kötter E, Schneider L, Sehnke F, Ohnmeiss K, Schröer R (2015) Sensitivities of powerto-gas within an optimised energy system. Energy Procedia 73:190–199

    Article  Google Scholar 

  • Langanke J et al (2014) Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem 16:1865–1870

    Article  CAS  Google Scholar 

  • Lau HC, Li H, Huang S (2017) Challenges and opportunities of coalbed methane development in China. Energy Fuels 31(5):4588–4602

    Article  CAS  Google Scholar 

  • Lee J, Ryu KH, Ha HY, Jung K-D, Lee JH (2020) Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag. J CO2 Utilize 37:113–121

    Google Scholar 

  • Leeson D, Mac Dowell N, Shah N, Petit C, Fennell PS (2017) A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity source. Int J Greenh Gas Control 61:71–84

    Article  CAS  Google Scholar 

  • Leonzio G (2017) Design and feasibility analysis of a Power-to-Gas plant in Germany. J Clean Prod 162:609–623

    Article  Google Scholar 

  • Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Util 27:326–354

    Article  CAS  Google Scholar 

  • Leonzio G (2019) Carbon capture utilization and storage supply chain: analysis, modeling and optimization. Sustain Agric Rev 37:37–72

    Article  Google Scholar 

  • Lewandowska-Bernat A, Desideri U (2017) Opportunities of Power-to-Gas technology. Energy Procedia 105:4569–4574

    Article  Google Scholar 

  • Li X, Fang Z (2014) Current status and technical challenges of CO2 storage in coal seams and enhanced coalbed methane recovery: an overview. Int J Coal Sci Technol 1(1):93–102

    Article  Google Scholar 

  • Li D, Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrogen Energy 34(1):308–313

    Article  Google Scholar 

  • Li W, Wang H, Shi Y, Cai N (2013) Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid-oxide electrolysis cells. Int J Hydrogen Energy 38:11104–11109

    Article  CAS  Google Scholar 

  • Linde (2012) Gas applications for the pulp and paper industry. Linde North America Inc., New York, NY, USA

    Google Scholar 

  • Linde (2019) Available at: http://www.linde-gas.com/en/processes/freezing_and_cooling/metal_cooling/index.html

  • Linde Engineering (2015). Available at: https://www.linde-engineering.com/en/process_plants/hydrogen_and_synthesis_gas_plants/gas_generation/isothermal_reactor/index.html

  • Liu M, Bai B, Li X (2013) A unified formula for determination of wellhead pressure and bottom-hole pressure. Energy Procedia 37:3291–3298

    Article  Google Scholar 

  • Liu RX, Poon CS (2016) Utilization of red mud derived from bauxite in self-compacting concrete. J Clean Prod 112:384–391

    Article  CAS  Google Scholar 

  • Liu S, Wang X (2017) Polymers from carbon dioxide: polycarbonates, polyurethanes. Curr Opin Green Sustain Chem 3:61–66

    Article  Google Scholar 

  • Luu MT, Milani D, Abbas A (2016) Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. J Clean Prod 112:3540–3554

    Article  CAS  Google Scholar 

  • Marchi B, Zanonia S, Pasetti M (2018) Industrial symbiosis for greener horticulture practices: the CO2 enrichment from energy intensive industrial processes. Procedia CIRP 69:562–567

    Article  Google Scholar 

  • Marciniak AA, Alves OC, Appel LG, Mota CJA (2019) Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent. J Catal 371(2019):88–95

    Article  CAS  Google Scholar 

  • Marin CM, Li L, Bhalkikar A, Doyle JE, Zeng XC, Cheung CH (2016) Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J Catal 340:295–301

    Article  CAS  Google Scholar 

  • Martín M, Grossmann IE (2017) Towards zero CO2 emissions in the production of methanol from switchgrass. CO2 to methanol. Comput Chem Eng 105:308–3016

    Article  Google Scholar 

  • Mazzotti M, Pini R, Storti G (2009) Enhanced coalbed methane recovery. J Supercrit Fluids 47(3):619–627

    Article  CAS  Google Scholar 

  • Mendelevitch R (2014) The role of CO2-EOR for the development of a CCTS infrastructure in the North Sea Region A techno-economic model and applications. Int J Greenhouse Gas Control 20:132–159

    Article  CAS  Google Scholar 

  • Mikulčić H, Skovc IR, Dominkovićd DF, Alwie SRW, Manane ZA, Tanf R, Duićb N, Mohamade SNH, Wang X (2019) Flexible Carbon Capture and Utilization technologies in future energysystems and the utilization pathways of captured CO2. Renew Sustain Energy Rev 114:109338

    Article  Google Scholar 

  • Monkman S, Shao YX (2006) Assessing the carbonation behavior of cementitious materials. J Mater Civ Eng 18(6):768–776

    Article  CAS  Google Scholar 

  • Muller et al (2016) Polyether carbonate polyol production method. Patent US 9.273,183 B2

    Google Scholar 

  • Mustafa A, Lougou BG, Shuai Y, Wang Z, Tan H (2020) Current technology development for CO2 utilization into solar fuels and chemicals: a review. J Energy Chem 49:96–123

    Article  Google Scholar 

  • Muthuraj R, Mekonnen T (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer 145:348–373

    Article  CAS  Google Scholar 

  • Nguyen DB, Trinh QH, Hossain MM, Lee WG, Mok YS (2019) Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. Int J Hydrogen Energy, In press

    Google Scholar 

  • Ni G, Lan Y, Cheng C, Meng Y, Wang X (2011) Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure. Int J Hydrogen Energy 36(20):12869–12876

    Article  CAS  Google Scholar 

  • Nikbin IM, Aliaghazadeh M, Charkhtab Sb, Fathollahpour A (2018) Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). J Clean Prod 172:2683–2694

    Article  CAS  Google Scholar 

  • Olaizola O (2003) Microalgal removal of CO2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioprocess Eng 8:360–367

    Article  CAS  Google Scholar 

  • Ozkan A, Dufour T, Arnoult G, De Keyzer P, Bogaerts A, Reniers F (2015) CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J CO2 Util 9:74–81

    Article  CAS  Google Scholar 

  • Pan SY, Chang EE, Chiang PC (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    Article  CAS  Google Scholar 

  • Pardal T, Messias S, Sousa M, Reis Machado AS, Rangel CM, Nunesc D, Pinto JV, Martins R, Nunes da Ponte M (2017) Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte. J CO2 Util 18:62–72

    Article  CAS  Google Scholar 

  • Parvasi P, Khosravanipour Mostafazadeh A, Rahimpour MR (2009) Dynamic modeling and optimization of a novel methanol synthesis loop with hydrogen permselective membrane reactor. Int J Hydrogen Energy 34(9):3717–3733

    Article  CAS  Google Scholar 

  • Patricio J, Angelis-Dimakis A, Castillo-Castillo A, Kalmykova Y, Rosado L (2017) Region prioritization for the development of carbon capture and utilization technologies. J CO2 Util 17:50–59

    Article  CAS  Google Scholar 

  • Petersa R, Baltruweita M, Grubea T, Can Samsuna R, Stolten D (2019) A techno economic analysis of the Power-to-Gas route. J CO2 Util 34:616–634

    Article  Google Scholar 

  • Pham M, Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2011) Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of La2O3/γ-Al2O3 catalyst. Catal Today 171(2011):67–71

    Article  CAS  Google Scholar 

  • Pieri T, Nikitas A, Castillo-Castillo A, Angelis-Dimakis A (2018) Holistic assessment of carbon capture and utilization value chains. Environments 5(108):1–17

    Google Scholar 

  • Pisal DS, Lele SS (2005) Carotenoid production from microalgae, Dunalliella salina, Indian. J Biotechnol 4:476–483

    CAS  Google Scholar 

  • Pradhan L, Bhattacharjee V, Mitra R, Bhattacharya I, Chowdhury R (2015) Biosequestration of CO2 using power plant algae (Rhizoclonium hieroglyphicum JUCHE2) in a Flat Plate Photobio-Bubble-Reactor—Experimental and modeling. Chem Eng J 275:381–390

    Article  CAS  Google Scholar 

  • Pérez-Fortes M, Bocin-Dumitriu A, Tzimas E (2014) Techno-economic assessment of carbon utilisation potential in Europe. Chem Eng Trans 39:1453–1458

    Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. In: Proceedings of the national academy of sciences of the United States of America, vol 101, pp 11506

    Google Scholar 

  • Rafiee A, Khalilpour KR, Milani D, Panahie M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6:5771–5794

    Article  CAS  Google Scholar 

  • Rahimpour MR (2008) A two-stage catalyst bed concept for conversion of carbon dioxide into methanol. Fuel Process Technol 89:556–566

    Article  CAS  Google Scholar 

  • Rahimpour MR, Ghader S (2003) Theoretical investigation of a Pd-membrane reactor for methanol synthesis. Chem Eng Technol 26(8):902–907

    Article  CAS  Google Scholar 

  • Ramos G et al (2016) A thermoplastic polyurethane based on polyether carbonate polyol. Patent WO 2016/120399 Al

    Google Scholar 

  • Rathod RR, Suryawanshi NT, Memade PD (2014) Evaluation of the properties of Red Mud Concrete. IOSR J Mech Civ Eng (IOSR-JMCE) 1:31–34. ISSN: 2278-1684

    Google Scholar 

  • Ribeiro DV, Labrincha JA, Morelli MR (2012) Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cem Concr Res 42:124–133

    Article  CAS  Google Scholar 

  • Ribeiro DV, Morelli MR (2011) Use of red mud as addition for Portland cement mortars. Available at.: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/081/47081549.pdf

  • Riccia A, Truda L, Palma V (2019) Study of the role of chemical support and structured carrier on the CO2 methanation reaction. Chem Eng J 377:120461

    Article  Google Scholar 

  • Rivera-Tinoco R, Farran M, Bouallou C, Aupretre F, Valentin S, Millet P, Ngameni JR (2016) Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. Int J Hydrogen Energy 41:4546–4559

    Article  CAS  Google Scholar 

  • Rubin ES, Short C, Booras G, Davison J, Ekstrom C, Matuszewski M, McCoy S (2013) A proposed methodology for CO2 capture and storage cost estimates. Int J Greenh Gas Control 17:488–503

    Article  CAS  Google Scholar 

  • Rutberg PG, Kuznetsov VA, Popov VE, Popov DS, Surov AV, Subbotin DI, Bratsev AN (2015) Conversion of methane by CO2+H2O+CH4 plasma. Appl Energy 148:159–168

    Article  CAS  Google Scholar 

  • Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J et al (2016) Review on methanation—from fundamentals to current projects. Fuel 166:276–296

    Article  Google Scholar 

  • Sai PS (2017) Strength properties of concrete by using red mud as a replacement of cement with hydrated lime. Int J Civ Eng Technol (IJCIET) 8(3):38–49

    Google Scholar 

  • Said et al (2013)

    Google Scholar 

  • Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43:8049–8080

    Article  CAS  PubMed  Google Scholar 

  • Sauer DU, Fuchs G, Lunz B, Leuthold M (2012) Technology Overview on Electricity Storage—Overview on the potential and on the deployment perspectives of electricity storage technologies.

    Google Scholar 

  • Sayyafzadeh M, Keshavarz A (2016) Optimisation of gas mixture injection for enhanced coalbed methane recovery using a parallel genetic algorithm. J Nat Gas Sci Eng 33:942–953

    Article  CAS  Google Scholar 

  • Sayyafzadeh M, Keshavarz A, Alias ARM, Dong KA, Manser M (2015) Investigation of varying-composition gas injection for coalbed methane recovery enhancement: a simulation-based study. J Nat Gas Sci Eng 27:1205–1212

    Article  CAS  Google Scholar 

  • Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S (2017) Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrogen Energy 42(52):30470–30492

    Article  CAS  Google Scholar 

  • Senghor A, Dioha RMN, Müllerb C, Youm I (2017) Cereal crops for biogas production: a review of possible impact of elevated CO2. Renew Sustain Energy Rev 71:548–554

    Article  CAS  Google Scholar 

  • Shi CS, Liu M, He PP, Ou ZH (2013) Factors affecting kinetics of CO2 curing of concrete. J Sustain Cement-Based Mater 1(1–2):24–33

    Google Scholar 

  • Shi-Cong K, Bao-jian Z, Chi-Sun P (2014) Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement Concr Compos 45:22

    Article  Google Scholar 

  • Sinayuc C, Shi JQ, Imrie EC, Syed SA, Korre A, Durucan S (2011) Implementation of horizontal well CBM/ECBM technology and the assessment of effective CO2 storage capacity in a Scottish coalfield. Energy Procedia 4:2150–2156

    Article  Google Scholar 

  • Singh A (2014) Encyclopedia of polymeric nanomaterials. In: Kobayashi S, Mullen K (eds), Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–5

    Google Scholar 

  • Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Song Y, Lid H (2018) Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renew Sustain Energy Rev 82:215–231

    Article  CAS  Google Scholar 

  • Specht M, Bandi A, Baumgart F, Murray CN, Gretz J, Eliasson B, Riemer PWF, Wokaun A (1999) Synthesis of methanol from biomass/CO2 resources, greenhouse gas control technologies, vol 723. Pergamon, Amsterdam

    Google Scholar 

  • Speybroeck VV, De Wispelaere K, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Waroquier M (2014) First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem Soc Rev 43:7326–7357

    Article  PubMed  Google Scholar 

  • Stewart RJ, Haszeldine RS (2015) Can producing oil store carbon? Greenhouse Gas footprint of CO2-EOR, offshore North Sea. Environ Sci Technol 49(9):5788–5795

    Article  CAS  PubMed  Google Scholar 

  • Stoots CM, O’Brien JE, Herring JS, Hartvigsen JJ (2009) Syngas production via high-temperature co-electrolysis of steam and carbon dioxide. J Fuel Cell Sci Technol 6:011014

    Article  Google Scholar 

  • Storch HV, Roeb M, Stadler H, Sattler C, Bardow A, Hoffschmidt B (2016) On the assessment of renewable industrial processes: case study for solar co-production of methanol and power. Appl Energy 183:121–132

    Article  Google Scholar 

  • Sutar H, Mishra SC, Sahoo SK, Chakraverty AP, Maharana HS (2014) Progress of red mud utilization: an overview. Am Chem Sci J 4(3):255–279

    Article  Google Scholar 

  • Taherimehr M, Pescarmona PP (2014) Green polycarbonates prepared by the copolymerization of CO2 with epoxides. J Appl Polym Sci 41141:1–17

    Google Scholar 

  • Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2011) CH4-CO2 reforming by plasma e challenges and opportunities. Prog Energy Combust Sci 37:113–124

    Article  CAS  Google Scholar 

  • Tcvetkov P, Cherepovitsyn A, Fedoseev S (2019) The changing role of CO2 in the transition to a circular economy: review of carbon sequestration projects. Sustainability 11:5834

    Article  CAS  Google Scholar 

  • Thema M, Bauer F, Sterner M (2019) Power-to-gas: electrolysis and methanation status review. Renew Sustain Energy Rev 112:775–787

    Article  CAS  Google Scholar 

  • Toyo Engineering (2015) Available at: http://www.toyo-eng.com/jp/en/products/petrochmical/methanol

  • Tsuparia E, Kärki J, Vakkilainen E (2016) Economic feasibility of Power-to-Gas integrated with biomass fired CHP plant. J Energy Storage 5:62–69

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Techol 99:4021–4028

    Article  CAS  Google Scholar 

  • Vandewalle J, Bruninx K, W, D (2015) Effects of large-scale Power-to-Gas conversion on the power, gas and carbon sectors and their interactions. Energy Convers Manage 94:28–39

    Article  Google Scholar 

  • Verma AK, Sirvaiya A (2016) Comparative analysis of intelligent models for prediction of Langmuir constants for CO2 adsorption of Gondwana coals in India. Geomech Geophy Geo-Energy Geo-Res 2(2):97–109

    Article  Google Scholar 

  • Wang Q, Shi H, Yan B, Jin Y, Cheng Y (2011) Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor. Int J Hydrogen Energy 36(14):8301–8306

    Article  CAS  Google Scholar 

  • Wang X, van’t Veld K, Marcy P, Huzurbazar S, Alvarado V (2018) Economic co-optimization of oil recovery and CO2 sequestration. Appl Energy 222:132–14

    Article  CAS  Google Scholar 

  • Wang F, Wang Y, Zhang L, Zhu J, Han B, Fan W, Xu L, Yu H, Cai W, Li Z, Deng Z, Shi W (2019) Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts. Catalysis today, In proof

    Google Scholar 

  • Wei N, Li X, Dahowski RT, Davidson CL, Liu S, Zha Y (2015) Economic evaluation on CO2- EOR of onshore oil fields in China. Int J Greenhouse Gas Control 37:170–181

    Article  CAS  Google Scholar 

  • Wen H, Cheng X, Chen J, Zhang C, Yu Z, Li Z, Fan S, Wei G, Cheng B (2020) Micro-pilot test for optimized pre-extraction boreholes and enhanced coalbed methane recovery by injection of liquid carbon dioxide in the Sangshuping coal mine. In press, Process Safety and Environmental Protection

    Book  Google Scholar 

  • Wong S, Law D, Deng X, Robinson J, Kadatz B, Gunter WD et al (2007) Enhanced coalbed methane and CO2 storage in anthracitic coals—micro-pilot test at south Qinshui, Shanxi, China. Int J Greenhouse Gas Control 1(2):215–222

    Article  CAS  Google Scholar 

  • Xu B, Yang R, Meng F, Reubroycharoen P, Vitidsant T, Zhang Y, Yoneyama Y, Tsubaki N (2009) A new method of low temperature methanol synthesis. Catal Surv Asia 13:147–163

    Article  CAS  Google Scholar 

  • Xuan D, Zhan B, Sun Poon C (2018) A maturity approach to estimate compressive strength development of CO2-cured concrete blocks. Cement Concr Compos 85:153–160

    Article  CAS  Google Scholar 

  • Yanpeng S, Yong N, Angshan W, Dengxiang J, Fengwen Y, Jianbing J (2014) Carbon dioxide reforming of methane to syngas by thermal plasma. Plasma Sci Technol 14(3):252–256

    Google Scholar 

  • Ye JP, Feng SL, Fan ZQ, Wang GQ, Gunter WD, Sam W et al (2007) Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin. Acta Petrolei Sinica 28(4):77–80

    CAS  Google Scholar 

  • Yin G, Deng B, Li M, Zhang D, Wang W, Li W, Shang D (2017) Impact of injection pressure on CO2–enhanced coalbed methane recovery considering mass transfer between coal fracture and matrix. Fuel 196:288–297

    Article  CAS  Google Scholar 

  • Zappa W (2014) Pilot-scale experimental work on the production of precipitated calcium carbonate (PCC) from steel slag for CO2 fixation. Master Thesis, Aalto University. Department of Energy Technology

    Google Scholar 

  • Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115(1–4):73–79

    Article  CAS  Google Scholar 

  • Zhan BJ, Xuan DX, Poon CS, Shi CJ (2016) Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cem Concr Comp 71:122–130

    Article  CAS  Google Scholar 

  • Zhang C, Jun KW, Gao R, Kwak G, Park HG (2017) Carbon dioxide utilization in a gas-to-methanol process combined with CO2/steam-mixed reforming: technoeconomic analysis. Fuel 190:303–311

    Article  CAS  Google Scholar 

  • Zhang X (2015) Microalgae removal of CO2 from flue gas. Clean Coal Technol Res Rep

    Google Scholar 

  • Zhao T, Hu X, Wu D, Li R, Yang G, Wu Y (2017) Direct synthesis of dimethylcarbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as recyclable catalyst and dehydrant. Chemsuschem 10:2046–2052

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang W, Li Y, Chen J, Yu B, Wang J, Zhang L, Zhang J (2017) Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy 40:512–539

    Article  CAS  Google Scholar 

  • Zhou J, Ma Z, Zhang L, Liu C, Pu J, Chen X, Zheng Y, Chan SH (2019) Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique. Int J Hydrogen Energy 44:28939–28946

    Article  CAS  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Amos Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. John Wiley & Sons Ltd., Oxford, UK, pp 225–266

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Leonzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonzio, G. (2022). State-Of-The-Art Overview of CO2 Conversions. In: Inamuddin, Boddula, R., Ahamed, M.I., Khan, A. (eds) Carbon Dioxide Utilization to Sustainable Energy and Fuels. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72877-9_18

Download citation

Publish with us

Policies and ethics