Skip to main content

Design and Analysis of Laboratory Experiments on Aquatic Plant Litter Decomposition

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

Microcosm studies are a useful tool when it comes to studying leaf litter decomposition but designing and analysing them can be a tricky path with many pitfalls. Because there is a plethora of drivers of leaf decomposition, it is important to be precise about the scientific questions that can be addressed with microcosm set-ups, and to use experimental designs that have minimal logistic implications but, at the same time, high statistical power. In this chapter, we first set the scene by introducing a hypothetical study that has the aim to estimate how leaf decomposition is driven by different decomposers and abiotic conditions. Following from this scenario, we give an overview of the main biotic and abiotic drivers of leaf decomposition that will play a role in laboratory settings (with special attention to consumer species identity, species richness, body size and metabolic capacity, and also temperature, time scales and stressors). We then explain how to design and analyse laboratory experiments on aquatic leaf litter decomposition including the mathematics for calculating the metabolic power of leaf decomposers and some statistical models. Further three case studies are given—highly controlled experiment that can be analysed by analysis of variance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelho, M. (2001). From litterfall to breakdown in streams: A review. The Scientific World Journal, 1, 656–680. https://doi.org/10.1007/978-94-011-0729-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, R., Pascoal, C., & Cássio, F. (2016). Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition—A microcosm experiment. FEMS Microbiology Ecology, 92(7).

    Google Scholar 

  • Bailey, R. A. (2008). Design of comparative experiments (Vol. 25). Cambridge University Press.

    Google Scholar 

  • Bailey, R. A. (2020). Hasse diagrams as a visual aid for linear models and analysis of variance. Communications in Statistics—Theory and Methods. https://doi.org/10.1080/03610926.2019.1676443.

    Article  Google Scholar 

  • Bailey, R. A., & Greenwood, J. J. D. (2018). Effects of neonicotinoids on bees: An invalid experiment. Ecotoxicology, 27(1), 1–7.

    Article  CAS  Google Scholar 

  • Bailey, R. A., & Reiss, J. (2014). Design and analysis of experiments testing for biodiversity effects in ecology. Journal of Statistical Planning and Inference, 144(1), 69–80. https://doi.org/10.1016/j.jspi.2012.09.008.

    Article  Google Scholar 

  • Bärlocher, F. (2005). Leaching. In M. A. Graça, F. Bärlocher, & M. O. Gessner (Eds.), Methods to study litter decomposition: A practical guide (1st ed., pp. 33–36). Springer.

    Google Scholar 

  • Bärlocher, F., Gessner, M. O., & Graça, M. A. S. (2020). Methods to study litter decomposition: A practical guide (2nd ed.). Retrieved from https://www.springer.com/gp/book/9783030305147.

  • Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L., & Lilley, A. K. (2005). The contribution of species richness and composition to bacterial services. Nature, 36(7054), 1157–1160. https://doi.org/10.1038/nature03891.

    Article  CAS  Google Scholar 

  • Benton, T. G., Solan, M., Travis, J. M. J., & Sait, S. M. (2007). Microcosm experiments can inform global ecological problems. Trends in Ecology & Evolution, 22(10), 516–521. https://doi.org/10.1016/j.tree.2007.08.003.

    Article  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. https://doi.org/10.1890/03-9000.

    Article  Google Scholar 

  • Canhoto, C., & Graça, M. A. S. (1996). Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia, 333(2), 79–85. https://doi.org/10.1007/BF00017570.

    Article  CAS  Google Scholar 

  • Canhoto, C., & Graça, M. A. S. (2008). Interactions between fungi and stream invertebrates: Back to the future. Novel Techniques and Ideas in Mycology: Fungal Diversity Research Series, 20, 205–325.

    Google Scholar 

  • Canhoto, C., Simões, S., Gonçalves, A. L., Guilhermino, L., & Bärlocher, F. (2017). Stream salinization and fungal-mediated leaf decomposition: a microcosm study. Science of the Total Environment, 599, 1638–1645.

    Article  Google Scholar 

  • Chambord, S., Tackx, M., Chauvet, E., Escolar, G., & Colas, F. (2017). Two microcrustaceans affect microbial and macroinvertebrate-driven litter breakdown. Freshwater Biology, 62(3), 530–543.

    Article  CAS  Google Scholar 

  • Duarte, S., Pascoal, C., Cássio, F., & Bärlocher, F. (2006). Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia, 147(4), 658–666. https://doi.org/10.1007/s00442-005-0300-4.

    Article  PubMed  Google Scholar 

  • Farrell, K. J., Rosemond, A. D., Kominoski, J. S., Bonjour, S. M., Rüegg, J., Koenig, L. E., Baker, C. L., Trentman, M. T., Harms, T. K., & McDowell, W. H. (2018). Variation in detrital resource stoichiometry signals differential carbon to nutrient limitation for stream consumers across biomes. Ecosystems, 21(8), 1676–1691. https://doi.org/10.1007/s10021-018-0247-z.

  • Flores, L., Bailey, R. A., Elosegi, A., Larrañaga, A., & Reiss, J. (2016). Habitat complexity in aquatic microcosms affects processes driven by detritivores. PLoS ONE, 11(11), 1–15. https://doi.org/10.1371/journal.pone.0165065.

    Article  CAS  Google Scholar 

  • Foucreau, N., Puijalon, S., Hervant, F., & Piscart, C. (2013). Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biology, 58(8), 1672–1681.

    Article  Google Scholar 

  • France, R., Culbert, H., Freeborough, C., & Peters, R. (1997). Leaching and early mass loss of boreal leaves and wood in oligotrophic water. Hydrobiologia, 345(2–3), 209–214.

    Article  Google Scholar 

  • Gamfeldt, L., Hillebrand, H., & Jonsson, P. R. (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89(5), 1223–1231. https://doi.org/10.1890/06-2091.1.

    Article  PubMed  Google Scholar 

  • Gamfeldt, L., & Roger, F. (2017). Revisiting the biodiversity-ecosystem multifunctionality relationship. Nature Ecology and Evolution, 1(7), 0168. https://doi.org/10.1038/s41559-017-0168.

    Article  Google Scholar 

  • Gamfeldt, L., Wallén, J., Jonsson, P. R., Berntsson, K. M., & Havenhand, J. N. (2005). Increasing intraspecific diversity enhances settling success in a marine invertebrate. Ecology, 86(12), 3219–3224. https://doi.org/10.1890/05-0377.

    Article  Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., et al. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25(6), 372–380. https://doi.org/10.1016/j.tree.2010.01.010.

    Article  Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248–2251. https://doi.org/10.1126/science.1061967.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, A. L., Simões, S., Bärlocher, F., & Canhoto, C. (2019). Leaf litter microbial decomposition in salinized streams under intermittency. Science of the Total Environment, 653, 1204–1212. https://doi.org/10.1016/j.scitotenv.2018.11.050.

    Article  CAS  Google Scholar 

  • González, J. M., & Graça, M. A. S. (2003). Conversion of leaf litter to secondary production by a shredding caddis-fly. Freshwater Biology, 48(9), 1578–1592. https://doi.org/10.1046/j.1365-2427.2003.01110.x.

    Article  Google Scholar 

  • Hauer, F. R., & Lamberti, G. A. (2007). Methods in stream ecology (2nd ed.). https://doi.org/10.1016/b978-0-12-332908-0.x5001-3.

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83(4), 1026–1038. https://doi.org/10.1890/0012-9658(2002)083%5b1026:cosdfa%5d2.0.co;2.

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54(2), 187–211. https://doi.org/10.2307/1942661.

    Article  Google Scholar 

  • Jabiol, J., Lecerf, A., Lamothe, S., Gessner, M. O., & Chauvet, E. (2019). Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities. Microbial Ecology, 77(4), 959–966. https://doi.org/10.1007/s00248-019-01353-3.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, P. (2013). Planning and managing agricultural and ecological experiments. Routledge.

    Google Scholar 

  • Jonsson, M., & Malmqvist, B. (2000). Ecosystem process rate increases with animal species richness: Evidence from leaf-eating, aquatic insects. Oikos, 89(3), 519–523. https://doi.org/10.1034/j.1600-0706.2000.890311.x.

    Article  Google Scholar 

  • Larrañaga, A., Basaguren, A., & Pozo, J. (2014). Resource quality controls detritivore consumption, growth, survival and body condition recovery of reproducing females. Marine & Freshwater Research, 65(7), 910–917. https://doi.org/10.1071/MF13165.

    Article  CAS  Google Scholar 

  • Marks, J. C. (2019). Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology Evolution and Systematics, 50, 547–568. https://doi.org/10.1146/annurev-ecolsys-110218-024755.

    Article  Google Scholar 

  • Martínez, A., Larrañaga, A., Pérez, J., Basaguren, A., & Pozo, J. (2013). Leaf-litter quality effects on stream ecosystem functioning: A comparison among five species. Fundamental and Applied Limnology, 183(3), 239–248. https://doi.org/10.1127/1863-9135/2013/0514.

    Article  CAS  Google Scholar 

  • Martínez, A., Larrañaga, A., Pérez, J., Descals, E., & Pozo, J. (2014). Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiology Ecology, 87(1), 257–267.

    Article  Google Scholar 

  • McKie, B. G., Woodward, G., Hladyz, S., Nistorescu, M., Preda, E., Popescu, C., Giller, P. S., & Malmqvist, B. (2008). Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. Journal of Animal Ecology, 77(3), 495–504. https://doi.org/10.1111/j.1365-2656.2008.01357.x.

  • Medeiros, A. O., Pascoal, C., & Graça, M. A. S. (2009). Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology, 54(1), 142–149.

    Article  Google Scholar 

  • Mille-Lindblom, C., Fischer, H., & Tranvik, J. L. (2006). Antagonism between bacteria and fungi: Substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos, 113(2), 233–242.

    Article  Google Scholar 

  • Ormerod, S. J., Dobson, M., Hildrew, A. G., & Townsend, C. (2010). Multiple stressors in freshwater ecosystems. Freshwater Biology, 55, 1–4.

    Article  Google Scholar 

  • Pascoal, C., & Cássio, F. (2004). Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology, 70(9), 5266–5273. https://doi.org/10.1128/AEM.70.9.5266-5273.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., Cássio, F., Nikolcheva, L., & Bärlocher, F. (2010). Realized fungal diversity increases functional stability of leaf litter decomposition under zinc stress. Microbial Ecology, 59(1), 84–93. https://doi.org/10.1007/s00248-009-9567-z.

    Article  CAS  PubMed  Google Scholar 

  • Pawar, S., Dell, A. I., & Savage, V. M. (2012). Dimensionality of consumer search space drives trophic interaction strengths. Nature, 486(7404), 485–489. https://doi.org/10.1038/nature11131.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, D. M., Bailey, R. A., Dossena, M., Gamfeldt, L., Reiss, J., Trimmer, M., et al. (2015). Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21(1), 396–406. https://doi.org/10.1111/gcb.12688.

    Article  PubMed  Google Scholar 

  • Perkins, D. M., McKie, B. G., Malmqvist, B., Gilmour, S. G., Reiss, J., & Woodward, G. (2010). Environmental warming and biodiversity-ecosystem functioning in freshwater microcosms. Partitioning the effects of species identity, richness and metabolism. Advances in Ecological Research, 43, 177–209. https://doi.org/10.1016/B978-0-12-385005-8.00005-8.

  • Perkins, D. M., Yvon‐Durocher, G., Demars, B. O., Reiss, J., Pichler, D. E., Friberg, N., Trimmer, M., & Woodward, G. (2012). Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Global Change Biology, 18(4), 1300–1311. https://doi.org/10.1111/j.1365-2486.2011.02597.x.

  • Peters, R. H. (1983). The ecological implications of body size. Cambridge University Press.

    Google Scholar 

  • Quinn, J. M., Burrell, G. P., & Parkyn, S. M. (2000). Influences of leaf toughness and nitrogen content on in-stream processing and nutrient uptake by litter in a Waikato, New Zealand, pasture stream and streamside channels. New Zealand Journal of Marine and Freshwater Research, 34(2), 253–271. https://doi.org/10.1080/00288330.2000.9516931.

    Article  Google Scholar 

  • Reiss, J., Bailey, R. A., Cássio, F., Woodward, G., & Pascoal, C. (2010). Assessing the contribution of micro-organisms and macrofauna to biodiversity-ecosystem functioning relationships in freshwater microcosms. Advances in Ecological Research, 43(C), 151–176. https://doi.org/10.1016/b978-0-12-385005-8.00004-6.

  • Reiss, J., Bailey, R. A., Perkins, D. M., Pluchinotta, A., & Woodward, G. (2011). Testing effects of consumer richness, evenness and body size on ecosystem functioning. Journal of Animal Ecology, 80(6), 1145–1154. https://doi.org/10.1111/j.1365-2656.2011.01857.x.

    Article  Google Scholar 

  • Reiss, J., Bridle, J. R., Montoya, J. M., & Woodward, G. (2009). Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution, 24(9), 505–514. https://doi.org/10.1016/j.tree.2009.03.018.

    Article  Google Scholar 

  • Reiss, J., & Schmid-Araya, J. M. (2010). Life history allometries and production of small fauna. Ecology, 91(2), 497–507. https://doi.org/10.1890/08-1248.1.

    Article  PubMed  Google Scholar 

  • Ribblett, S. G., Palmer, M. A., & Wayne Coats, D. (2005). The importance of bacterivorous protists in the decomposition of stream leaf litter. Freshwater Biology, 50(3), 516–526.

    Article  Google Scholar 

  • Risse-Buhl, U., Karsubke, M., Schlief, J., Baschien, C., Weitere, M., & Mutz, M. (2012). Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. Aquatic Microbial Ecology, 66(2), 133–147.

    Article  Google Scholar 

  • Risse‐Buhl, U., Herrmann, M., Lange, P., Akob, D. M., Pizani, N., Schönborn, W., Totsche, K. U., & Küsel, K. (2013). Phagotrophic protist diversity in the groundwater of a karstified aquifer–morphological and molecular analysis. Journal of Eukaryotic Microbiology, 60(5), 467–479.

    Google Scholar 

  • Risse-Buhl, U., Schlief, J., & Mutz, M. (2015). Phagotrophic protists are a key component of microbial communities processing leaf litter under contrasting oxic conditions. Freshwater Biology, 60(11), 2310–2322.

    Article  CAS  Google Scholar 

  • Ruesink, J. L., & Srivastava, D. S. (2001). Numerical and per capita responses to species loss: Mechanisms maintaining ecosystem function in a community of stream insect detritivores. Oikos, 93(2), 221–234. https://doi.org/10.1034/j.1600-0706.2001.930206.x.

    Article  Google Scholar 

  • Swan, C. M., & Palmer, M. A. (2006). Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Oecologia, 149(1), 107–114.

    Article  Google Scholar 

  • Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P. (2010). Invertébrés d’eau douce: systématique, biologie, écologie. CNRS editions.

    Google Scholar 

  • Treton, C., Chauvet, E., & Charcosset, J.-Y. (2004). Competitive interaction between two aquatic hyphomycete species and increase in leaf litter breakdown. Microbial Ecology, 48(3), 439–446.

    Article  CAS  Google Scholar 

  • Whitfield, J. (2004). Ecology’s big, hot idea. PLoS Biology, 2(12), https://doi.org/10.1371/journal.pbio.0020440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., et al. (2005). Body size in ecological networks. Trends in Ecology & Evolution, 20(7), 402–409. https://doi.org/10.1016/j.tree.2005.04.005.

    Article  Google Scholar 

  • Zimmer, M. (2005). Cellulases. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition (pp. 249–254). Springer.

    Google Scholar 

  • Zimmer, M. (2006). The role of animal-microbe interactions in isopod ecology and evolution. Acta Biol Benrodis, 13, 127–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Reiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reiss, J., Bailey, R.A., Perkins, D.M. (2021). Design and Analysis of Laboratory Experiments on Aquatic Plant Litter Decomposition. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_20

Download citation

Publish with us

Policies and ethics