Skip to main content

Development of an Mg–RE-Based Die-Cast Magnesium Alloy for Elevated Applications

  • Conference paper
  • First Online:
Magnesium 2021

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 591 Accesses

Abstract

The development of magnesium (Mg) alloys capable of operating at demanding working temperatures above 200 °C and the ability of using high-pressure die casting for high-volume manufacturing are the most critical advancements required in developing new alloys used to manufacture critical parts for internal combustion (IC) engines used in power tools. Here we introduce the development of a rare earth (RE)-based die-cast Mg alloy for elevated temperature applications in small IC engines. The developed Mg–RE-based die-cast alloy shows good ambient and high temperature strength, and it also has excellent high-temperature creep resistance. In addition, the developed RE-based die-cast Mg alloy shows good stiffness at elevated temperatures. Furthermore, the alloy exhibits good thermal conductivity at ambient and high temperatures, which is a key point normally neglected during the development of high-temperature Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloys 1:2–22

    Article  CAS  Google Scholar 

  2. Hort N, Dieringa H, Kainer KU (2018) Magnesium pistons in engines: fiction or fact? In: Orlov D, Joshi V, Solanki KN, Neelameggham N (eds) Magnesium technology 2018. The minerals, metals & materials society, pp 349–353

    Google Scholar 

  3. Dong XX, Nyberg EA, Ji S (2020) A die-cast magnesium alloy for applications at elevated temperatures. In: Jordon B, Miller V, Joshi V, Neelameggham N (eds) Magnesium technology 2020. The minerals, metals & materials society, pp 31–36

    Google Scholar 

  4. Dong XX, Feng LY, Wang SH, Nyberg EA, Ji S (2020) A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. J Magnes Alloys. https://doi.org/10.1016/j.jma.2020.09.012

    Article  Google Scholar 

  5. Pekguleryuz MO, Kaya AA (2003) Creep resistant magnesium alloys for powertrain applications. Adv Eng Mater 5:866–878

    Article  CAS  Google Scholar 

  6. Hu H, Yu A, Li NY, Allison JE (2003) Potential magnesium alloys for high temperature die cast automotive applications: a review. Mater Manuf Process 18:687–717

    Article  CAS  Google Scholar 

  7. Hillis JE, Shook SO (1989) Composition and performance of an improved magnesium AS41 alloy. SAE Tech Pap 890205

    Google Scholar 

  8. Evangelista E, Gariboldi E, Lohne O, Spigarelli S (2004) High-temperature behaviour of as die-cast and heat treated Mg–Al–Si AS21X magnesium alloy. Mater Sci Eng A 387–389:41–45

    Article  Google Scholar 

  9. Luo AA, Balogh MP, Powell BR (2002) Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall Mater Trans A 33A:567–574

    Article  Google Scholar 

  10. Pekguleryuz MO, Baril E (2001) Development of creep resistant Mg–Al–Sr alloys. In: Hryn JN (ed) Magnesium technology 2001. The minerals, metals & materials society, pp 119–125

    Google Scholar 

  11. Lefebvre M, Pekguleryuz M, Labelle P (2002) Magnesium-based casting alloys having improved elevated temperature performance. US patent 6342180

    Google Scholar 

  12. Baril E, Labelle P, Pekguleryuz M (2003) Elevated temperature Mg-Al-Sr: creep resistance, mechanical properties, and microstructure. JOM 55:34–39

    Article  CAS  Google Scholar 

  13. Powell BR, Rezhets V, Luo AA, Bommarito JJ, Tiwari BL (2001) Creep resistant magnesium alloy die casting. US patent 6264763

    Google Scholar 

  14. Powell BR, Luo AA, Rezhets V, Bommarito JJ, Tiwari BL (2001) Development of creep-resistant magnesium alloys for powertrain applications: part 1 of 2. SAE Tech Pap 2001-01-0422

    Google Scholar 

  15. Bronfin B, Aghion E, Von Buch F, Schumann S, Katsir M (2001) Die casting magnesium alloys for elevated temperature applications. In: Hryn JN (ed) Magnesium technology 2001. The minerals, metals & materials society, pp 127–130

    Google Scholar 

  16. Aghion E, Moscovitch N, Arnon A (2007) Solidification characteristics of newly developed die cast magnesium alloy MRI153M. Mater Sci Technol 23:270–275

    Article  CAS  Google Scholar 

  17. Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H (2003) Dead sea magnesium alloys newly developed for high temperature applications. In: Kaplan HI (ed) Magnesium technology 2003. The minerals, metals & materials society, pp 177–182

    Google Scholar 

  18. Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H (2003) Newly developed magnesium alloys for powertrain applications. JOM 55:30–33

    Article  CAS  Google Scholar 

  19. Aghion E, Moscovitch N, Arnon A (2009) Mechanical properties of die-cast magnesium alloy MRI 230D. J Mater Eng Perform 18:912–916

    Article  CAS  Google Scholar 

  20. Samato K, Yamamoto Y, Sakate N, Hirabara S (1997) Heat-resistant magnesium alloy member. European patent EP0799901A1

    Google Scholar 

  21. Koike S, Washizu K, Tanaka S, Baba T, Kikawa K (2000) Development of lightweight oil pans made of a heat-resistant magnesium alloy for hybrid engines. SAE Techn Pap 2000-01-1117

    Google Scholar 

  22. Anyanwu IA, Gokan Y, Nozawa S, Suzuki A, Kamado S, Kojima Y, Takeda S, Ishida T (2003) Development of new die-castable Mg–Zn–Al–Ca–RE alloys for high temperature applications. Mater Trans 44:562–570

    Article  CAS  Google Scholar 

  23. Powell BR, Rezhets V, Balogh MP, Waldo RA (2001) The relationship between microstructure and creep behavior in AE42 magnesium die castings. In: Hryn JN (ed) Magnesium technology 2001. The minerals, metals & materials society, pp 175–182

    Google Scholar 

  24. Dargusch MS, Pettersen K, Bakke P, Nogita K, Bowles AL, Dunlop GL (2004) Microstructure and mechanical properties of high pressure die cast magnesium alloy AE42 with 1% strontium. Int J Cast Metal Res 17:170–173

    Article  CAS  Google Scholar 

  25. Bakke P, Westengen H (2005) The role of rare earth elements in structure and property control of magnesium die casting alloys. In: Neelameggham N, Kaplan HI, Powell BR (eds) Magnesium technology 2005. The minerals, metals & materials society, pp 291–296

    Google Scholar 

  26. Gavras S, Zhu SM, Easton MA, Gibson MA, Dieringa H (2019) Compressive creep behavior of high-pressure die-cast aluminum-containing magnesium alloys developed for elevated temperature applications. Front Mater 6:262

    Article  Google Scholar 

  27. Zhu SM, Nie JF, Gibson MA, Easton MA, Bakke P (2012) Microstructure and creep behavior of high-pressure die-cast magnesium alloy AE44. Metall Mater Trans A 43A:4137–4144

    Article  Google Scholar 

  28. Mordike B (2001) Development of highly creep resistant magnesium alloys. J Mater Process Technol 117:391–394

    Article  CAS  Google Scholar 

  29. Kiełbus A (2007) Microstructure of AE44 magnesium alloy before and after hot-chamber die casting. J Achiev Mater Manuf Eng 20:459–462

    Google Scholar 

  30. Zhu SM, Easton MA, Abbott TB, Nie JF, Dargusch MS, Hort N, Gibson MA (2015) Evaluation of magnesium die-casting alloys for elevated temperature applications: microstructure, tensile properties, and creep resistance. Metall Mater Trans A 46:3543–3554

    Article  CAS  Google Scholar 

  31. Moreno IP, Nandy TK, Jones JW, Allison JE, Pollock TM (2002) Microstructure and creep behavior of a die cast magnesium-rare earth alloy. In: Kaplan HI (ed) Magnesium technology 2002. The minerals, metals & materials society, pp 111–116

    Google Scholar 

  32. Atiya G, Bamberger M, Katsman A (2011) Microstructure, phase evolution and precipitation strengthening of Mg-3.1Nd-0.45Zr-0.25Zn alloy. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (eds) Magnesium technology 2011. The minerals, metals & materials society, pp 249–253

    Google Scholar 

  33. Atiya G, Bamberger M, Katsman A (2012) Microstructure and phase composition in a die cast Mg–Nd alloy containing Zn and Zr. Int J Mater Res 103:1277–1280

    Article  CAS  Google Scholar 

  34. Easton M, Gibson MA, Zhu, Abbott T, Nie JF, Bettles CJ, Savage G (2018) Development of magnesium-rare earth die-casting alloys. In: Orlov D, Joshi V, Solanki KN, Neelameggham N (eds) Magnesium technology 2018. The minerals, metals & materials society, pp 329–336

    Google Scholar 

  35. Dong XX, Nyberg EN, Almgren M, Ji SX (2019) Swedish patent. Application No. 1950219-4

    Google Scholar 

  36. Dong XX, Youssef H, Zhang YJ, Yang HL, Wang SH, Ji SX (2019) High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cutting-edge super vacuum assisted die casting process. Compos Part B-Eng 177

    Article  CAS  Google Scholar 

  37. Dong XX, Youssef H, Zhang YJ, Yang HL, Wang SH, Ji SX (2020) Advanced heat treated die-cast aluminium composites fabricated by TiB2 nanoparticle implantation. Mater Des 186:

    Article  CAS  Google Scholar 

  38. Dong XX, Youssef H, Zhu XZ, Zhang YJ, Wang SH, Ji SX (2021) High as-cast strength die-cast AlSi9Cu2Mg alloy prepared by nanoparticle strengthening with industrially acceptable ductility. J Alloys Compd 852

    Article  CAS  Google Scholar 

  39. Liu LH, Zhang T, Liu ZY, Yu CY, Dong XX, He LJ, Gao K, Zhu XG, Li WH, Wang CY, Li PJ, Zhang LC, Li LG (2018) Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting. Materials 11:2338

    Article  Google Scholar 

  40. Sumitomo T, Cáceres CH, Veidt M (2002) The elastic modulus of cast Mg–Al–Zn alloys. J Light Met 2:49–56

    Article  Google Scholar 

  41. Xu YL, Wang L, Huang M, Gensch F, Kainer KU, Hort N (2018) The effect of solid solute and precipitate phase on Young’s modulus of binary Mg–RE alloys. Adv Eng Mater 20:1800271

    Article  Google Scholar 

  42. https://www.leadingedgeonly.com/innovation/view/high-conductivity-mg-alloy

Download references

Acknowledgements

Husqvarna Group is greatly appreciated for the financial and technical support of the work. Jon Gadd from BCAST laboratory is acknowledged for the technical support of the high-pressure die casting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxun Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, X., Feng, L., Nyberg, E.A., Ji, S. (2021). Development of an Mg–RE-Based Die-Cast Magnesium Alloy for Elevated Applications. In: Luo, A., et al. Magnesium 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-72432-0_4

Download citation

Publish with us

Policies and ethics