Skip to main content

AI Music Mixing Systems

  • Chapter
  • First Online:
Handbook of Artificial Intelligence for Music

Abstract

Mixing music, or music production, is the process of combining a series of different musical tracks together, while applying a range of audio processing to blend the tracks together in a pleasant and aesthetically pleasing way. Music mixing practices require the pleasant combination of all aspects of a musical piece, using a set of engineering tools to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18.

    Google Scholar 

  2. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Müller, K.-R. (2010). How to explain individual classification decisions. Journal of Machine Learning Research, 11(June), 1803–1831.

    Google Scholar 

  3. Baier, A. (1986). Trust and antitrust. Ethics, 96(2), 231–260.

    Google Scholar 

  4. Barchiesi, D., & Reiss, J. (2009). Automatic target mixing using least-squares optimization of gains and equalization settings. In Proceedings of the 12th Conference on Digital Audio Effects (DAFx-09), Como, Italy.

    Google Scholar 

  5. Barchiesi, D., & Reiss, J. (2010). Reverse engineering of a mix. Journal of the Audio Engineering Society, 58(7/8), 563–576.

    Google Scholar 

  6. Benito, A. L., & Reiss, J. D. (2017). Intelligent multitrack reverberation based on hinge-loss markov random fields. In Audio Engineering Society Conference: 2017 AES International Conference on Semantic Audio.

    Google Scholar 

  7. Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific American, 284(5), 28–37.

    Google Scholar 

  8. Birtchnell, T., & Elliott, A. (2018). Automating the black art: Creative places for artificial intelligence in audio mastering. Geoforum, 96, 77–86.

    Google Scholar 

  9. Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., & Bello, J. P. (2014). MedleyDB: A multitrack dataset for annotation-intensive MIR research. In 15th International Society for Music Information Retrieval Conference (ISMIR 2014).

    Google Scholar 

  10. Bolton, C., Machová, V., Kovacova, M., & Valaskova, K. (2018). The power of human-machine collaboration: Artificial intelligence, business automation, and the smart economy. Economics, Management, and Financial Markets, 13(4), 51–56.

    Google Scholar 

  11. Bromham, G. (2016). How can academic practice inform mix-craft? In R. Hepworth-Sawyer & J. Hodgson (Eds.), Mixing music. Perspective on music production, Chap. 16 (pp. 245–256). Taylor & Francis.

    Google Scholar 

  12. Bromham, G., Moffat, D., Barthet, M., Danielsen, A., & Fazekas, G. (2019). The impact of audio effects processing on the perception of brightness and warmth. In ACM Audio Mostly Conference, Nottingham, UK. ACM.

    Google Scholar 

  13. Bromham, G., Moffat, D., Fazekas, G., Barthet, M., & Sandler, M. B. (2018). The impact of compressor ballistics on the perceived style of music. In Audio Engineering Society Convention, New York, USA (Vol. 145).

    Google Scholar 

  14. Bruford, F., Barthet, M., McDonald, S., & Sandler, M. B. (2019). Groove explorer: An intelligent visual interface for drum loop library navigation. In 24th ACM Intelligent User Interfaces Conference (IUI).

    Google Scholar 

  15. Bull, R. (1997). The aesthetics of acid.

    Google Scholar 

  16. Burgess, R. J. (2014). The history of music production. Oxford University Press.

    Google Scholar 

  17. Cannam, C., Landone, C., & Sandler, M. (2010). Sonic visualiser: An open source application for viewing, analysing, and annotating music audio files. In Proceedings of the ACM Multimedia 2010 International Conference, Firenze, Italy (pp. 1467–1468).

    Google Scholar 

  18. Cartwright, M., & Pardo, B. (2014). Synthassist: An audio synthesizer programmed with vocal imitation. In Proceedings of the 22nd ACM International Conference on Multimedia (pp. 741–742).

    Google Scholar 

  19. Cartwright, M., Pardo, B., and Reiss, J. D. (2014). Mixploration: Rethinking the audio mixer interface. In International Conference on Intelligent User Interfaces.

    Google Scholar 

  20. Cascone, K. (2000). The aesthetics of failure: “Post-digital” tendencies in contemporary computer music. Computer Music Journal, 24(4), 12–18.

    Google Scholar 

  21. Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal.

    Google Scholar 

  22. Chourdakis, E. T., & Reiss, J. D. (2016). Automatic control of a digital reverberation effect using hybrid models. In Audio Engineering Society Conference: 60th International Conference: DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech). Audio Engineering Society.

    Google Scholar 

  23. Chourdakis, E. T., & Reiss, J. D. (2017). A machine-learning approach to application of intelligent artificial reverberation. Journal of the Audio Engineering Society, 65(1/2), 56–65.

    Google Scholar 

  24. Clifford, A., & Reiss, J. D. (2013). Using delay estimation to reduce comb filtering of arbitrary musical sources. Journal of the Audio Engineering Society, 61(11), 917–927.

    Google Scholar 

  25. Cohen, S. (1993). Ethnography and popular music studies. Popular Music, 12(2), 123–138.

    Google Scholar 

  26. Colonel, J., & Reiss, J. D. (2019). Exploring preference for multitrack mixes using statistical analysis of mir and textual features. In Audio Engineering Society Convention (Vol. 147). Audio Engineering Society.

    Google Scholar 

  27. Dawson, R. (2013). Cell: A generative music game. Master’s thesis, University of Sussex.

    Google Scholar 

  28. De Man, B., Boerum, M., Leonard, B., Massenburg, G., King, R., & Reiss, J. D. (2015). Perceptual evaluation of music mixing practices. In Audio Engineering Society Convention (Vol. 138).

    Google Scholar 

  29. De Man, B., Jillings, N., Moffat, D., Reiss, J. D., & Stables, R. (2016). Subjective comparison of music production practices using the Web Audio Evaluation Tool. In 2nd AES Workshop on Intelligent Music Production.

    Google Scholar 

  30. De Man, B., McNally, K., & Reiss, J. D. (2017). Perceptual evaluation and analysis of reverberation in multitrack music production. Journal of the Audio Engineering Society, 65(1/2), 108–116.

    Google Scholar 

  31. De Man, B., Mora-Mcginity, M., Fazekas, G., & Reiss, J. D. (2014). The Open Multitrack Testbed. In Audio Engineering Society Convention (Vol. 137).

    Google Scholar 

  32. De Man, B., & Reiss, J. D. (2013). A knowledge-engineered autonomous mixing system. In Audio Engineering Society Convention (Vol. 135). Audio Engineering Society.

    Google Scholar 

  33. De Man, B., & Reiss, J. D. (2013). A semantic approach to autonomous mixing. Journal on the Art of Record Production (JARP), 8.

    Google Scholar 

  34. Deruty, E. (2016). Goal-oriented mixing. In Proceedings of the 2nd AES Workshop on Intelligent Music Production.

    Google Scholar 

  35. Dugan, D. (1975). Automatic microphone mixing. Journal of the Audio Engineering Society, 23(6), 442–449.

    Google Scholar 

  36. Durr, G., Peixoto, L., Souza, M., Tanoue, R., & Reiss, J. D. (2015). Implementation and evaluation of dynamic level of audio detail. In Audio Engineering Society Conference: 56th International Conference: Audio for Games, London, UK.

    Google Scholar 

  37. Eno, B. (2004). The studio as compositional tool. In C. Cox & D. Warner (Eds.), Audio culture: Readings in modern music, Chap. 22 (pp. 127–130). Londres: Continum.

    Google Scholar 

  38. Eno, B. and Schmidt, P. (1975). Oblique strategies. Opal. (Limited edition, boxed set of cards.) [rMAB].

    Google Scholar 

  39. Ewert, S., & Sandler, M. (2016). Piano transcription in the studio using an extensible alternating directions framework. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(11), 1983–1997.

    Google Scholar 

  40. Farnell, A. (2007). An introduction to procedural audio and its application in computer games. In Audio Mostly Conference, Ilmenau, Germany (pp. 1–31). ACM.

    Google Scholar 

  41. Fenton, S. (2018). Automatic mixing of multitrack material using modified loudness models. In Audio Engineering Society Convention (Vol. 145). Audio Engineering Society.

    Google Scholar 

  42. Fenton, S., & Lee, H. (2015). Towards a perceptual model of “punch” in musical signals. In Audio Engineering Society Convention (Vol. 139). Audio Engineering Society.

    Google Scholar 

  43. Ford, J., Cartwright, M., & Pardo, B. (2015). Mixviz: A tool to visualize masking in audio mixes. In Audio Engineering Society Convention (Vol. 139). Audio Engineering Society.

    Google Scholar 

  44. Furman, J., & Seamans, R. (2019). AI and the economy. Innovation Policy and the Economy, 19(1), 161–191.

    Google Scholar 

  45. Gang, R., Bocko, G., Bocko, M. F., Headlam, D., Lundberg, J., & Ren, G. (2010). Automatic music production system employing probabilistic expert systems. In Audio Engineering Society Convention (Vol. 129). Audio Engineering Society.

    Google Scholar 

  46. Garcia, R. A. (2001). Automating the design of sound synthesis techniques using evolutionary methods. In Proceeding 4th International Conference on Digital Audio Effects (DAFx), Limerick, Ireland.

    Google Scholar 

  47. Gatys, L., Ecker, A. S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. Advances in Neural Information Processing Systems, 262–270.

    Google Scholar 

  48. Gelineck, S., & Overholt, D. (2015). Haptic and visual feedback in 3d audio mixing interfaces. In Proceedings of Audio Mostly Conference on Interaction With Sound (p. 14). ACM.

    Google Scholar 

  49. Gillet, O., & Richard, G. (2006). ENST-drums: An extensive audio-visual database for drum signals processing. In Proceedings of the 7th International Society for Music Information Retrieval Conference (ISMIR-06) (pp. 156–159).

    Google Scholar 

  50. Glaser, B., & Strauss, A. (1967). Grounded theory: The discovery of grounded theory. Sociology the Journal of the British Sociological Association, 12(1), 27–49.

    Google Scholar 

  51. Grinstein, E., Duong, N. Q., Ozerov, A., & Pérez, P. (2018). Audio style transfer. In International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 586–590). IEEE.

    Google Scholar 

  52. Hafezi, S., & Reiss, J. D. (2015). Autonomous multitrack equalization based on masking reduction. Journal of the Audio Engineering Society, 63(5), 312–323.

    Google Scholar 

  53. Hargreaves, S. (2014). Music metadata capture in the studio from audio and symbolic data. Ph.D. thesis, Queen Mary University of London.

    Google Scholar 

  54. Hargreaves, S., Klapuri, A., & Sandler, M. B. (2012). Structural segmentation of multitrack audio. IEEE Transactions on Audio, Speech, and Language Processing, 20(10), 2637–2647.

    Google Scholar 

  55. Hawley, S. H., Colburn, B., & Mimilakis, S. I. (2019). Signaltrain: Profiling audio compressors with deep neural networks. arXiv:1905.11928.

  56. Hermes, K. (2019). Enhancing creativity through automatic mixing research: Testing spectral clarity predictors in the mixprocess. The Art of Record Production.

    Google Scholar 

  57. Hestermann, S., & Deffner, N. (2020). Enhanced de-essing via neural networks. In Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part II (pp. 537–542). Springer.

    Google Scholar 

  58. Holfelt, J., Csapo, G., Andersson, N., Zabetian, S., Castenieto, M., Dahl, S., et al. (2017). Extraction, mapping, and evaluation of expressive acoustic features for adaptive digital audio effects. In Proceedings of the Sound & Music Computing Conference.

    Google Scholar 

  59. Hsu, T.-h., Liu, J.-F., Yu, P.-N., Lee, W.-S., & Hsu, J.-S. (2008). Development of an automatic parking system for vehicle. In 2008 IEEE Vehicle Power and Propulsion Conference (pp. 1–6). IEEE.

    Google Scholar 

  60. Izhaki, R. (2008). Mixing audio: Concepts, practices and tools. Focal Press.

    Google Scholar 

  61. Izotope. (2020). Neutron plugin. Retrieved from https://www.izotope.com/en/learn/unmasking-your-mix-with-neutron.html.

  62. Jazzomat. (2018). Jazzomat dataset, the jazzomat research project. Retrieved May 26, 2020, from http://jazzomat.hfm-weimar.de/dbformat/dbcontent.html.

  63. Jillings, N., & Stables, R. (2017). Automatic channel routing using musical instrument linked data. In 3rd AES Workshop on Intelligent Music Production.

    Google Scholar 

  64. Jillings, N., & Stables, R. (2017). Automatic masking reduction in balance mixes using evolutionary computing. In Audio Engineering Society Convention (Vol. 143). Audio Engineering Society.

    Google Scholar 

  65. Jun, S., Kim, D., Jeon, M., Rho, S., & Hwang, E. (2015). Social mix: Automatic music recommendation and mixing scheme based on social network analysis. The Journal of Supercomputing, 71(6), 1933–1954.

    Google Scholar 

  66. Katz, B., & Katz, R. A. (2003). Mastering audio: The art and the science. Butterworth-Heinemann.

    Google Scholar 

  67. King, A. (2015). Technology as a vehicle (tool and practice) for developing diverse creativities. In P. Burnard & E. Haddon (Eds.), Activating diverse musical creativities: Teaching and learning in higher music education, Chap. 11 (pp. 203–222). Bloomsbury Publishing.

    Google Scholar 

  68. Kolasinski, B. (2008). A framework for automatic mixing using timbral similarity measures and genetic optimization. In Audio Engineering Society Convention (Vol. 124).

    Google Scholar 

  69. Lefford, M. N., Bromham, G., Fazekas, G., & Moffat, D. (2021). Context aware intelligent mixing systems. Journal of the Audio Engineering Society, 69(3), 128–141. https://doi.org/10.17743/jaes.2020.0043

  70. Lefford, M. N., Bromham, G., & Moffat, D. (2020). Mixing with intelligent mixing systems: Evolving practices and lessons from computer assisted design. In Audio Engineering Society Convention, Vienna, Austria (Vol. 148).

    Google Scholar 

  71. Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., & Lederberg, J. (1993). DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61(2), 209–261.

    Google Scholar 

  72. Ma, Z., Reiss, J. D., & Black, D. A. (2013). Implementation of an intelligent equalization tool using yule-walker for music mixing and mastering. In Audio Engineering Society Convention (Vol. 134). Audio Engineering Society.

    Google Scholar 

  73. Maddams, J. A., Finn, S., & Reiss, J. D. (2012). An autonomous method for multi-track dynamic range compression. In Proceedings of the 15th International Conference on Digital Audio Effects (DAFx-12) (pp. 1–8).

    Google Scholar 

  74. Martínez Ramírez, M. A., Benetos, E., & Reiss, J. D. (2019). A general-purpose deep learning approach to model time-varying audio effects.

    Google Scholar 

  75. Martínez Ramírez, M. A., Benetos, E., & Reiss, J. D. (2020). Deep learning for black-box modeling of audio effects. Applied Sciences, 10(2), 638.

    Google Scholar 

  76. Martínez Ramírez, M. A., & Reiss, J. D. (2017). Deep learning and intelligent audio mixing. In Proceedings of the 3rd Workshop on Intelligent Music Production.

    Google Scholar 

  77. Martínez Ramírez, M. A., & Reiss, J. D. (2017). Stem audio mixing as a content-based transformation of audio features. In 19th IEEE Workshop on Multimedia Signal Processing (MMSP) (pp. 1–6). IEEE.

    Google Scholar 

  78. Martínez Ramírez, M. A., & Reiss, J. D. (2019). Modeling nonlinear audio effects with end-to-end deep neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 171–175). IEEE.

    Google Scholar 

  79. Martínez Ramírez, M. A., Stoller, D., & Moffat, D. (2021). A deep learning approach to intelligent drum mixing with the wave-u-net. Journal of the Audio Engineering Society, 69(3), 142–151. https://doi.org/10.17743/jaes.2020.0031.

  80. Mat, M., Yassin, I. M., Taib, M. N., Zabidi, A., Hassan, H. A., & Tahir, N. M. (2010). Adaptive filter based on narx model for recorded audio noise removal. In 2010 IEEE Control and System Graduate Research Colloquium (ICSGRC 2010) (pp. 26–32). IEEE.

    Google Scholar 

  81. Mauch, M., MacCallum, R. M., Levy, M., & Leroi, A. M. (2015). The evolution of popular music: USA 1960–2010. Royal Society Open Science, 2(5).

    Google Scholar 

  82. McDermott, J. H., & Simoncelli, E. P. (2011). Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron, 71(5), 926–940.

    Google Scholar 

  83. McGarry, G., Tolmie, P., Benford, S., Greenhalgh, C., & Chamberlain, A. (2017). “They’re all going out to something weird” workflow, legacy and metadata in the music production process. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (pp. 995–1008).

    Google Scholar 

  84. McGrath, S., & Love, S. (2017). The user experience of mobile music making: An ethnographic exploration of music production and performance in practice. Computers in Human Behavior, 72, 233–245.

    Google Scholar 

  85. Mengual, L., Moffat, D., & Reiss, J. D. (2016). Modal synthesis of weapon sounds. In Proceeding Audio Engineering Society Conference: 61st International Conference: Audio for Games, London. Audio Engineering Society.

    Google Scholar 

  86. Merchel, S., Altinsoy, M. E., & Stamm, M. (2012). Touch the sound: Audio-driven tactile feedback for audio mixing applications. Journal of the Audio Engineering Society, 60(1/2), 47–53.

    Google Scholar 

  87. Mimilakis, S. I., Cano, E., Abeßer, J., & Schuller, G. (2016). New sonorities for jazz recordings: Separation and mixing using deep neural networks. In 2nd AES Workshop on Intelligent Music Production (WIMP) (Vol. 13).

    Google Scholar 

  88. Mimilakis, S. I., Drossos, K., Virtanen, T., & Schuller, G. (2016). Deep neural networks for dynamic range compression in mastering applications. In Audio Engineering Society Convention (Vol. 140).

    Google Scholar 

  89. Miranda, E. R., & Al Biles, J. (2007). Evolutionary computer music. Springer.

    Google Scholar 

  90. Moffat, D., & Reiss, J. D. (2016). Dereverberation and its application to the blind source separation problem. In Proceeding Audio Engineering Society Conference: 60th International Conference: DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech). Audio Engineering Society.

    Google Scholar 

  91. Moffat, D., & Reiss, J. D. (2018). Objective evaluations of synthesised environmental sounds. In Proceeding 21th International Conference on Digital Audio Effects (DAFx-17), Aveiro, Portugal.

    Google Scholar 

  92. Moffat, D., & Reiss, J. D. (2020). Semantic music production. Journal of the Audio Engineering Society (in press).

    Google Scholar 

  93. Moffat, D., Ronan, D., & Reiss, J. D. (2015). An evaluation of audio feature extraction toolboxes. In Proceeding 18th International Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway.

    Google Scholar 

  94. Moffat, D., Ronan, D., & Reiss, J. D. (2017). Unsupervised taxonomy of sound effects. In Proceeding 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK.

    Google Scholar 

  95. Moffat, D., & Sandler, M. B. (2018). Adaptive ballistics control of dynamic range compression for percussive tracks. In Audio Engineering Society Convention, New York, USA (Vol. 145).

    Google Scholar 

  96. Moffat, D., & Sandler, M. B. (2019). Approaches in intelligent music production. Arts, 8(4), 125.

    Google Scholar 

  97. Moffat, D., & Sandler, M. B. (2019). An automated approach to the application of reverberation. In Audio Engineering Society Convention, New York, USA (Vol. 147).

    Google Scholar 

  98. Moffat, D., & Sandler, M. B. (2019). Automatic mixing level balancing enhanced through source interference identification. In Audio Engineering Society Convention, Dublin, Ireland (Vol. 146).

    Google Scholar 

  99. Moffat, D., & Sandler, M. B. (2019). Machine learning multitrack gain mixing of drums. In Audio Engineering Society Convention, New York, USA (Vol. 147).

    Google Scholar 

  100. Moffat, D., Thalmann, F., & Sandler, M. B. (2018). Towards a semantic web representation and application of audio mixing rules. In Proceedings of the 4th Workshop on Intelligent Music Production (WIMP), Huddersfield, UK.

    Google Scholar 

  101. Moore, A. (2020). Dynamic range compression and the semantic descriptor aggressive. Applied Sciences, 10(7), 2350.

    Google Scholar 

  102. Muir, B. M. (1994). Trust in automation: Part I. theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11):1905–1922.

    Google Scholar 

  103. Naylor, P. A., & Gaubitch, N. D. (2010). Speech dereverberation. Springer Science & Business Media.

    Google Scholar 

  104. Nelson, W. R., et al. (1982). Reactor: An expert system for diagnosis and treatment of nuclear reactor accidents (pp. 296–301). Pittsburgh, PA: AAAI.

    Google Scholar 

  105. Nercessian, S., & Lukin, A. (2019). Speech dereverberation using recurrent neural networks. In Proceeding 23rd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK.

    Google Scholar 

  106. Owsinski, B. (2013). The mixing engineer’s handbook. Nelson Education.

    Google Scholar 

  107. Pachet, F., & Delerue, O. (2000). On-the-fly multi-track mixing. In Audio Engineering Society Convention (Vol. 109). Audio Engineering Society.

    Google Scholar 

  108. Palladini, A. (2018). Intelligent audio machines. In Keynote Talk at 4th Workshop on Intelligent Music Production (WIMP-18).

    Google Scholar 

  109. Pardo, B., Rafii, Z., & Duan, Z. (2018). Audio source separation in a musical context. In Springer handbook of systematic musicology (pp. 285–298). Springer.

    Google Scholar 

  110. Paterson, J. (2011). The preset is dead; long live the preset. In Audio Engineering Society Convention (Vol. 130). Audio Engineering Society.

    Google Scholar 

  111. Pauwels, J., O’Hanlon, K., Fazekas, G., & Sandler, M. B. (2017). Confidence measures and their applications in music labelling systems based on hidden markov models. ISMIR, 279–285.

    Google Scholar 

  112. Perez Gonzalez, E., & Reiss, J. (2009). Automatic equalization of multichannel audio using cross-adaptive methods. In Audio Engineering Society Convention (Vol. 127). Audio Engineering Society.

    Google Scholar 

  113. Perez Gonzalez, E., & Reiss, J. (2009). Automatic gain and fader control for live mixing. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA’09) (pp. 1–4).

    Google Scholar 

  114. Perez Gonzalez, E., & Reiss, J. D. (2008). Improved control for selective minimization of masking using interchannel dependancy effects. In 11th International Conference on Digital Audio Effects (DAFx) (p. 12).

    Google Scholar 

  115. Perez Gonzalez, E., & Reiss, J. D. (2010). A real-time semiautonomous audio panning system for music mixing. EURASIP Journal on Advances in Signal Processing, 2010(1).

    Google Scholar 

  116. Pestana, P., & Reiss, J. (2014). Intelligent audio production strategies informed by best practices. In Audio Engineering Society Conference: 53rd International Conference: Semantic Audio. Audio Engineering Society.

    Google Scholar 

  117. Pestana, P. D., Ma, Z., Reiss, J. D., Barbosa, A., & Black, D. A. (2013). Spectral characteristics of popular commercial recordings 1950–2010. In Audio Engineering Society Convention (Vol. 135). Audio Engineering Society.

    Google Scholar 

  118. Pestana, P. D., Reiss, J. D., & Barbosa, A. (2015). Cross-adaptive polarity switching strategies for optimization of audio mixes. In Audio Engineering Society Convention (Vol. 138).

    Google Scholar 

  119. Pestana, P. D. L. G. (2013). Automatic mixing systems using adaptive digital audio effects. Ph.D. thesis, Universidade Católica Portuguesa.

    Google Scholar 

  120. Pras, A., De Man, B., & Reiss, J. D. (2018). A case study of cultural influences on mixing practices. In Audio Engineering Society Convention (Vol. 144).

    Google Scholar 

  121. Pras, A., & Guastavino, C. (2011). The role of music producers and sound engineers in the current recording context, as perceived by young professionals. Musicae Scientiae, 15(1), 73–95.

    Google Scholar 

  122. Pras, A., Guastavino, C., & Lavoie, M. (2013). The impact of technological advances on recording studio practices. Journal of the American Society for Information Science and Technology, 64(3), 612–626.

    Google Scholar 

  123. Prior, N. (2010). The rise of the new amateurs: Popular music, digital technology, and the fate of cultural production. In J. R. Hall, L. Grindstaff, & M.-C. Lo (Eds.), Routledge handbook of cultural sociology (pp. 398–407). Routledge.

    Google Scholar 

  124. Prior, N. (2012). Digital formations of popular music. Réseaux, 2, 66–90.

    Google Scholar 

  125. Rasmussen, A. N. (1990). The inco expert system project: Clips in shuttle mission control. In First CLIPSConference (p. 305).

    Google Scholar 

  126. Reed, D. (2000). A perceptual assistant to do sound equalization. In Proceedings of the 5th International Conference on Intelligent User Interfaces (pp. 212–218). ACM.

    Google Scholar 

  127. Reiss, J., & Brandtsegg, Ø. (2018). Applications of cross-adaptive audio effects: Automatic mixing, live performance and everything in between. Frontiers in Digital Humanities, 5, 17.

    Google Scholar 

  128. Reiss, J. D. (2011). Intelligent systems for mixing multichannel audio. In Proceeding 17th International Conference on Digital Signal Processing (DSP) (pp. 1–6). IEEE.

    Google Scholar 

  129. Reiss, J. D. (2018). Do you hear what I hear? The science of everyday sounds. Professorial: Inaugural Lecture Queen Mary University.

    Google Scholar 

  130. Rödel, C., Stadler, S., Meschtscherjakov, A., & Tscheligi, M. (2014). Towards autonomous cars: The effect of autonomy levels on acceptance and user experience. In Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 1–8). ACM.

    Google Scholar 

  131. Ronan, D., De Man, B., Gunes, H., & Reiss, J. D. (2015). The impact of subgrouping practices on the perception of multitrack music mixes. In Audio Engineering Society Convention (Vol. 139).

    Google Scholar 

  132. Ronan, D., Gunes, H., & Reiss, J. D. (2017). Analysis of the subgrouping practices of professional mix engineers. In Audio Engineering Society Convention (Vol. 142).

    Google Scholar 

  133. Ronan, D., Ma, Z., Mc Namara, P., Gunes, H., & Reiss, J. D. (2018). Automatic minimisation of masking in multitrack audio using subgroups.

    Google Scholar 

  134. Ronan, D., Moffat, D., Gunes, H., & Reiss, J. D. (2015). Automatic subgrouping of multitrack audio. In Proceeding 18th International Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway.

    Google Scholar 

  135. Ronan, D., Reiss, J. D., & Gunes, H. (2018). An empirical approach to the relationship between emotion and music production quality. arXiv:1803.11154.

  136. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson Education Limited.

    Google Scholar 

  137. Sandler, M., De Roure, D., Benford, S., & Page, K. (2019). Semantic web technology for new experiences throughout the music production-consumption chain. In 2019 International Workshop on Multilayer Music Representation and Processing (MMRP) (pp. 49–55). IEEE.

    Google Scholar 

  138. Sarkar, S., Reiss, J. D., & Brandtsegg, Ø. (2017). Investigation of a drum controlled cross-adaptive audio effect for live performance. In Proceeding 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK.

    Google Scholar 

  139. Sauer, C., Roth-Berghofer, T., Auricchio, N., & Proctor, S. (2013). Recommending audio mixing workflows. In International Conference on Case-Based Reasoning (pp. 299–313). Springer.

    Google Scholar 

  140. Scherer, K. R., Zentner, M. R., et al. (2001). Emotional effects of music: Production rules. Music and Emotion: Theory and Research, 361(2001), 392.

    Google Scholar 

  141. Schmidt, B. (2003). Interactive mixing of game audio. In Audio Engineering Society Convention (Vol. 115). Audio Engineering Society.

    Google Scholar 

  142. Schwarz, D., Cahen, R., Jacquemin, C., & Ding, H. (2011). Sound level of detail in interactive audiographic 3d scenes. In International Computer Music Conference (ICMC), Huddersfield, UK.

    Google Scholar 

  143. Seetharaman, P., & Pardo, B. (2016). Audealize: Crowdsourced audio production tools. Journal of the Audio Engineering Society, 64(9), 683–695.

    Google Scholar 

  144. Selfridge, R., Moffat, D., Avital, E. J., & Reiss, J. D. (2018). Creating real-time aeroacoustic sound effects using physically informed models. Journal of the Audio Engineering Society, 66(7/8), 594–607.

    Google Scholar 

  145. Senior, M. (2011). Mixing secrets for the small studio: Additional resources.

    Google Scholar 

  146. Senior, M. (2012). Mixing Secrets. Focal Press.

    Google Scholar 

  147. Sheng, D., & Fazekas, G. (2019). A feature learning siamese model for intelligent control of the dynamic range compressor. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.

    Google Scholar 

  148. Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of undersea teleoperators. Technical report, Massachusetts Inst of Tech Cambridge Man-Machine Systems Lab.

    Google Scholar 

  149. Stables, R., Enderby, S., De Man, B., Fazekas, G., & Reiss, J. D. (2014). SAFE: A system for the extraction and retrieval of semantic audio descriptors. In 15th International Society for Music Information Retrieval Conference (ISMIR 2014).

    Google Scholar 

  150. Stasis, S., Jillings, N., Enderby, S., & Stables, R. (2017). Audio processing chain recommendation. In Proceedings of the 20th International Conference on Digital Audio Effects, Edinburgh, UK.

    Google Scholar 

  151. Stasis, S., Jillings, N., Enderby, S., & Stables, R. (2017). Audio processing chain recommendation using semantic cues. In 3rd Workshop on Intelligent Music Production.

    Google Scholar 

  152. Stevens, R., & Raybould, D. (2013). The game audio tutorial: A practical guide to creating and implementing sound and music for interactive games. Routledge.

    Google Scholar 

  153. Terrell, M., & Reiss, J. D. (2009). Automatic monitor mixing for live musical performance. Journal of the Audio Engineering Society, 57(11), 927–936.

    Google Scholar 

  154. Terrell, M., Reiss, J. D., & Sandler, M. (2010). Automatic noise gate settings for drum recordings containing bleed from secondary sources. EURASIP Journal on Advances in Signal Processing, 2010, 10.

    Google Scholar 

  155. Terrell, M., & Sandler, M. (2012). An offline, automatic mixing method for live music, incorporating multiple sources, loudspeakers, and room effects. Computer Music Journal, 36(2), 37–54.

    Google Scholar 

  156. Terrell, M., Simpson, A., & Sandler, M. (2014). The mathematics of mixing. Journal of the Audio Engineering Society, 62(1/2), 4–13.

    Google Scholar 

  157. Toulson, R. (2016). The dreaded mix sign-off: Handing over to mastering. In Mixing Music (pp. 257–269). Routledge.

    Google Scholar 

  158. Tsilfidis, A., Papadakos, C., & Mourjopoulos, J. (2009). Hierarchical perceptual mixing. In Audio Engineering Society Convention (Vol. 126).

    Google Scholar 

  159. Van Waterschoot, T., & Moonen, M. (2011). Fifty years of acoustic feedback control: State of the art and future challenges. Proceedings of the IEEE, 99(2), 288–327.

    Google Scholar 

  160. Verfaille, V., & Arfib, D. (2002). Implementation strategies for adaptive digital audio effects. In Proceeding 5th International Conference on Digital Audio Effects (DAFx-02), Hamburg (pp. 21–26).

    Google Scholar 

  161. Verfaille, V., Arfib, D., Keiler, F., Knesebeck, A. v. d., & Zölter, U. (2011). Adaptive digital audio effects. In U. Zölter (Ed.), DAFX—Digital Audio Effects, Chap. 9 (pp. 321–391). Wiley.

    Google Scholar 

  162. Verma, P., & Smith, J. O. (2018). Neural style transfer for audio spectograms. In 31st Conference on Neural Information Processing Systems (NIPS 2017). Workshop for Machine Learning for Creativity and Design, Long Beach, CA, USA.

    Google Scholar 

  163. Vickers, E. (2010). The loudness war: Background, speculation, and recommendations. In Audio Engineering Society Convention (Vol. 129). Audio Engineering Society.

    Google Scholar 

  164. Virtanen, T., Gemmeke, J. F., Raj, B., & Smaragdis, P. (2015). Compositional models for audio processing: Uncovering the structure of sound mixtures. IEEE Signal Processing Magazine, 32(2), 125–144.

    Google Scholar 

  165. Ward, D., Reiss, J. D., & Athwal, C. (2012). Multitrack mixing using a model of loudness and partial loudness. In Audio Engineering Society Convention (Vol. 133).

    Google Scholar 

  166. Weaver, J., Barthet, M., & Chew, E. (2018). Analysis of piano duo tempo changes in varying convolution reverberation conditions. In Audio Engineering Society Convention (Vol. 145). Audio Engineering Society.

    Google Scholar 

  167. Weaver, J., Barthet, M., & Chew, E. (2019). Filling the space: The impact of convolution reverberation time on note duration and velocity in duet performance. In Audio Engineering Society Convention (Vol. 147). Audio Engineering Society.

    Google Scholar 

  168. Wichern, G., Wishnick, A., Lukin, A., & Robertson, H. (2015). Comparison of loudness features for automatic level adjustment in mixing. In Audio Engineering Society Convention (Vol. 139).

    Google Scholar 

  169. Wilmering, T., Fazekas, G., & Sandler, M. B. (2016). AUFX-O: Novel methods for the representation of audio processing workflows. In International Semantic Web Conference.

    Google Scholar 

  170. Wilmering, T., Moffat, D., Milo, A., & Sandler, M. B. (2020). A history of audio effects. Applied Sciences, 10(3), 791.

    Google Scholar 

  171. Wilson, A., & Fazenda, B. (2015). 101 mixes: A statistical analysis of mix-variation in a dataset of multi-track music mixes. In Audio Engineering Society Convention (Vol. 139). Audio Engineering Society.

    Google Scholar 

  172. Wilson, A., & Fazenda, B. M. (2013). Perception & evaluation of audio quality in music production. In Proceedings of the 16th International Conference on Digital Audio Effects (DAFx-13).

    Google Scholar 

  173. Wilson, A., & Fazenda, B. M. (2016). An evolutionary computation approach to intelligent music production informed by experimentally gathered domain knowledge. In Proceedings of the 2nd Audio Engineering Society Workshop on Intelligent Music Production (WIMP), London, UK.

    Google Scholar 

  174. Wilson, A., Loughran, R., & Fazenda, B. M. (2017). On the suitability of evolutionary computing to developing tools for intelligent music production. In 3rd Workshop on Intelligent Music Production (WIMP), Salford, UK.

    Google Scholar 

  175. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

    Google Scholar 

  176. Zheng, T., Seetharaman, P., & Pardo, B. (2016). SocialFX: Studying a crowdsourced folksonomy of audio effects terms. In Proceedings of the 24th ACM International Conference on Multimedia (pp. 182–186).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Moffat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moffat, D. (2021). AI Music Mixing Systems. In: Miranda, E.R. (eds) Handbook of Artificial Intelligence for Music. Springer, Cham. https://doi.org/10.1007/978-3-030-72116-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72116-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72115-2

  • Online ISBN: 978-3-030-72116-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics